微生物结合纤维加筋黄土坡面抗侵蚀试验研究
CSTR:
作者:
作者单位:

1.西南石油大学 地球科学与技术学院;2.中铁四局集团投资运营有限公司

中图分类号:

TU528

基金项目:

四川省自然科学基金(No. 2022NSFSC0183);四川省矿产资源研究中心科研项目(No. SCKCZY2022-YB012);国家级大学生创新创业训练计划(项目编号202310615010;202310615015;202310615017)


Experimental study on anti-erosion performance of microbial combined fiber reinforced loess slope
Author:
Affiliation:

1.College of Earth Science and Technology,Southwest Petroleum University;2.China Railway Fourth Bureau Group Investment and Operation Co,Ltd

Fund Project:

Natural Science Foundation of Sichuan Province(No. 2022NSFSC0183); Scientific Research Project of Sichuan Mineral Resources Research Center(No. SCKCZY2022-YB012); National Innovation and Entrepreneurship Training Program for College Students (Project No.202310615010;No.202310615015;No.202310615017)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    降雨侵蚀严重威胁土质边坡稳定,甚至诱发失稳破坏。本研究联合黄麻纤维与微生物诱导碳酸钙沉淀(MICP)技术开展黄土坡面生态加固,模拟降雨测试分析坡面抗侵蚀性能提升程度及影响因素,利用扫描电子显微镜(SEM)和能量色散 X 射线光谱仪(EDS)从微观角度分析减缓黄土坡面降雨侵蚀作用机制,探究减缓黄土坡面降雨侵蚀的可行手段。结果表明:(1) 添加黄麻纤维有助提升微生物矿化黄土抗降雨侵蚀性能,尤以中高含量中长尺寸纤维的提升效果最佳。(2) 经生物矿化处理的纤维加筋黄土可显著抵抗弱降雨(6mm/h)侵蚀,亦能短期抵抗强降雨(45mm/h)侵蚀;强降雨条件下,抗侵蚀性能随纤维掺量增加而提升、但提升幅度逐步降低,最高抗侵蚀性能提升为 64.2%。(3) 生物胶结硬壳层厚度随纤维长度和含量的增加而变薄,C2L5 和 C8L25 之间厚度差能达到 2.86 倍。(4) 纤维加筋微生物矿化黄土表层存在两种胶结模式:1)碳酸钙晶体沉淀于粒间孔隙而成的“粒间填充”模式;2)碳酸钙借助纤维连接包裹土颗粒而成的“裹覆胶结”模式。研究结果对黄土丘陵沟壑区坡面降雨侵蚀防控措施的有效实施具有指导意义。

    Abstract:

    Rainfall erosion seriously threatens the stability of soil slopes and even induces instability and failure. In this study, jute fiber and microbial induced calcium carbonate precipitation (MICP) technology were combined to carry out ecological reinforcement of loess slope. Simulated rainfall test was used to analyze the improvement degree and influencing factors of slope erosion resistance. Scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) were used to analyze the mechanism of mitigating rainfall erosion on loess slope from a micro perspective, and to explore the feasible means of mitigating rainfall erosion on loess slope. The results show that: (1) The addition of jute fiber can help to improve the rainfall erosion resistance of microbial mineralized loess, especially the medium and high content of medium and long size fiber. (2) The fiber reinforced loess treated by biomineralization can significantly resist the erosion of weak rainfall (6mm/h) and short-term erosion heavy rainfall (45mm/h). Under heavy rainfall conditions, the corrosion resistance increases with the increase of fiber content, but the increase range gradually decreased, and the highest corrosion resistance increased to 64.2%.(3) With the increase of fiber length and fiber content, the thickness difference between C2L5 and C8L25can reach 2.86 times.(4) There are two cementation modes in the surface layer of fiber-reinforced microbial mineralized loess: 1) the “intergranular filling” mode formed by the precipitation of calcium carbonate crystals in intergranular pores; 2) The “wrapped cementation” mode of calcium carbonate is formed by wrapping soil particles with fiber connection. The research results have practical guiding significance for the effective implementation of slope rainfall erosion prevention and control measures in the loess hilly and gully region.

    参考文献
    [1] Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, 2002, Nature 416: 159–163.
    [2] 谢婉丽, 王延寿, 马中豪, 等. 黄土湿陷机理研究现状及发展趋势[J]. 现代地质. 2015, 29(02): 397-407.Xie Wanli, Wang Yanshou, Ma Zhonghao, et al. Research Status and Development Trends of Loess Collapse Mechanism [J]. Modern Geology. 2015, 29 (02): 397-407 (in Chinese)
    [3] Cheng, Yao-Jia; Tang, Chao-Sheng; Pan, Xiao-Hua; Liu, Bo; Xie, Yue-Han; Cheng, Qing; Shi, Bin. Application of microbial induced carbonate precipitation for loess surface erosion control. Engineering Geology, 2021, 294: 106387
    [4] 金钊. 走进新时代的黄土高原生态恢复与生态治理[J]. 地球环境学报, 2019, 10(3): 316-322Jin Zhao. Ecological restoration and ecological management of the Loess Plateau in the new era [J]. Earth Environment Journal, 2019, 10 (3): 316-322
    [5] 张少宏, 康顺祥, 李永红. 降雨对黄土边坡稳定性的影响[J]. 水土保持通报, 2005, (5): 42-44Zhang Shaohong, Kang Shunxiang, Li Yonghong. Effect of rainfall on stability of loess slope [J]. Notice of Soil and Water Conservation, 2005, (5): 42-44
    [6] 李娜, 孙军杰, 王谦, 钟秀梅, 冯敏杰, 郭鹏.黄土地基改性处理技术研究进展评述与展望[J]. 地球科学进展, 2017, 32(2): 209-219Li Na, Sun Junjie, Wang Qian, Zhong Xiumei, Feng Minjie, Guo Peng. Review and prospect of research progress on loess foundation modification treatment technology [J]. Geoscience Progress, 2017, 32 (2): 209-219
    [7] 张耀, 胡再强, 陈昊, 李冰, 宋朝阳. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报, 2018,40(4): 681-688Zhang Yao, Hu Zaiqiang, Chen Hao, Li Bing, Song Chaoyang. Experimental study on the improvement of loess structure by acidic solution [J]. Journal of Geotechnical Engineering, 2018, 40 (4): 681-688
    [8] 刘华, 胡鹏飞, 王松鹤, 刘乃飞, 胡文乐, 谷宏全. 酸溶液对原状黄土抗拉强度的影响试验研究[J]. 土木与环境工程学报(中英文), 2022, 44(5): 109-117Liu Hua, Hu Pengfei, Wang Songhe, Liu Naifei, Hu Wenle, Gu Hongquan. Experimental study on the effect of acid solution on the tensile strength of undisturbed loess [J]. Journal of Civil and Environmental Engineering, 2022, 44 (5): 109-117
    [9] 晏长根, 梁哲瑞, 贾卓龙, 兰恒星, 石玉玲, 杨万里. 黄土边坡坡面防护技术综述[J]. 交通运输工程学报, 2023, 234): 1-22. doi: 10.19818/j.cnki.1671-1637.2023.04.001 (Yan Changgen, Liang Zherui, Jia Zhuolong, Lan Hengxing, Shi Yuling, Yang Wanli.Summary of loess slope protection technology [J]. Transportation Engineering Journal, 2023,23 (4): 1-22.
    [10] 章懿涛, 方祥位, 胡丰慧, 姚志华, 吴焕然, 申春妮. 不同胶结程度MICP固化珊瑚砂的无侧限压缩离散元分析[J]. 土木与环境工程学报(中英文), 2022, 44(4): 18-26Zhang Yitao, Fang Xiangwei, Hu Fenghui, Yao Zhihua, Wu Huanran, Shen Chunni. Discrete element analysis of unconfined compression of MICP solidified coral sand with different cementation degrees [J]. Journal of Civil and Environmental Engineering, 2022, 44 (4): 18-26
    [11] 张宽, 唐朝生, 刘博, 张天生, 程青, 施斌. 基于新型单相MICP技术改性黏性土力学特性的试验研究[J]. 工程地质学报, 2020,28 (2): 306-316Zhang Kuan, Tang Chaosheng, Liu Bo, Zhang Tiansheng, Cheng Qing, Shi Bin. Experimental Study on Mechanical Properties of Modified Cohesive Soil Based on New Single-Phase MICP Technology [J]. ACTA ENGINEERING GEOLOGICA SINICA, 2020, 28 (2): 306-316
    [12] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548.QIAN Chunxiang, WANG Anhui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36(6): 1537-1548.
    [13] 吴超传, 郑俊杰, 赖汉江, 崔明娟, 宋杨. 微生物固化砂土强度增长机理及影响因素试验研究[J]. 土木与环境工程学报(中英文), 2020, 42 (1): 31-38Wu Chaochuan, Zheng Junjie, Lai Hanjiang, Cui Mingjuan, Song Yang. Experimental study on strength growth mechanism and influencing factors of microbial solidified sand [J]. Journal of Civil and Environmental Engineering, 2020, 42 (1): 31-38
    [14] 董博文, 刘士雨, 高歆雨, 王闰铠. 海水环境下微生物诱导磷酸盐沉淀加固钙质砂效果评价[J]. 土木与环境工程学报(中英文), 2020, 42(6): 205-206Dong Bowen, Liu Shiyu, Gao Xinyu, Wang Runjia. Evaluation of the effect of microbial induced phosphate precipitation on calcareous sand reinforcement in seawater environment [J]. Journal of Civil and Environmental Engineering, 2020, 42 (6): 205-206
    [15] 刘汉龙, 肖鹏, 肖杨, 王建平, 陈育民, 楚剑. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. doi: 10.11779/CJGE201801002 (Experimental study on dynamic characteristics of MICP cemented calcareous sand [J]. Journal of Geotechnical Engineering, 2018, 40 (1): 38-45.
    [16] 刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战[J]. 岩土工程学报,Liu Hanlong, Zhao Chang, Xiao Yang. Mechanisms and theories of microbial mineralization reaction, deposition and destruction: research progress and challenges [J]. Journal of geotechnical engineering.
    [17] 孔德成, 孙治国, 贾方方. 微生物诱导碳酸钙沉淀技术改良黄土湿陷性研究[J]. 硅酸盐通报, 2022, 41(3): 969-975Kong Decheng, Sun Zhiguo, Jia Fangfang. Study on the improvement of loess collapsibility by microbial induced calcium carbonate precipitation technology [J]. Silicate Bulletin, 2022, 41 (3): 969-975
    [18] CHENG Y J, TANG C S, PAN X H, et al. Application of microbial induced carbonate precipitation for loess surface erosion control. Eng Geol, 2021, 294: 14.
    [19] 程瑶佳, 唐朝生, 谢约翰, 刘博, 泮晓华. 微生物诱导碳酸钙沉积技术改性黄土结构强度试验研究[J].工程地质学报, 2021, 29(1): 44-51Cheng Yaojia, Tang Chaosheng, Xie John, Liu Bo, Pan Xiaohua. Experimental study on structural strength of loess modified by microbial induced calcium carbonate deposition technology [J]. Journal of Engineering Geology, 2021, 29 (1): 44-51
    [20] Cui, (Cui Ming-Juan)MJ; Zheng, (Zheng Jun-Jie)JJ; Zhang, (Zhang Rong-Jun)RJ; Lai, (Lai Han-Jiang)HJ; Zhang, (Zhang Jun)J. Influence of cementation level on the strength behaviour of bio-cemented sand. Acta Geotechnica, 2017, 12(5): 971-986
    [21] Li, (Li Mingdong)MD; Li, (Li Lin)L; Ogbonnaya, (, Ubani)U Ogbonnaya; Wen, (Wen Kejun)KJ; Tian, (Tian Anguo)AG; Amini, (, Farshad)F Amini. Influence of Fiber Addition on Mechanical Properties of MICP-Treated Sand. Journal of Materials in Civil Engineering, 2016,28(4): 1-10
    [22] CHOI S G, WANG K J,CHU J. Properties of biocemented,fiber reinforced sand. Constructionand Building Materials, 2016, 120:623-629.
    [23] 王瑞, 泮晓华, 唐朝生, 吕超, 王殿龙, 董志浩, 施斌. MICP联合纤维加筋改性钙质砂的动力特性研究[J]. 岩土力学, 2022, 43(10): 2643-2654Wang Rui, Pan Xiaohua, Tang Chaosheng, ChaoLyu, Wang Dianlong, Dong Zhihao, Shi Bin. Research on dynamic characteristics of MICP combined with fiber reinforced modified calcareous sand [J]. Geotechnical Mechanics, 2022, 43 (10): 2643-2654
    [24] 郑俊杰, 宋杨, 赖汉江, 崔明娟, 吴超传. 微生物固化纤维加筋砂土抗剪强度试验研究[J]. 土木与环境工程学报(中英文), 2019, 41(1): 15-21Zheng Junjie, Song Yang, Lai Hanjiang, Cui Mingjuan, Wu Chaochuan. Experimental study on shear strength of sand reinforced by microbial solidified fiber [J]. Journal of Civil and Environmental Engineering, 2019, 41 (1): 15-21
    [25] Guo L., Dai Q., Lin X., Jiang Y., Wang B., ... & Zhou, L. 2023. Enhancing fiber-matrix interface permeability resistance of natural fiber-reinforced, biocemented sand by CaCO3 seed pretreatment. Geomechanics for Energy and the Environment, 100481.
    [26] 段金贵, 王怀星, 姚姬璇, 王昕宇, 赵晓娟, 白旭龙, 田堪良. 黄土坡面的微生物矿化加固及抗侵蚀性能试验研究[J]. 水土保持通报, 2022, 42(5): 33-40Duan Jingui, Wang Huaixing, Yao Jixuan, Wang Xinyu, Zhao Xiaojuan, Bai Xulong, Tian Kanliang. Experimental Study on Microbial Mineralization Reinforcement and Erosion Resistance of Loess Slope [J].Soil and Water Conservation Bulletin, 2022, 42 (5): 33-40
    [27] 彭芳乐, 小竹望, 龙冈文夫. 土工格栅加筋砂土的变形与破坏机理解析[J]. 岩土力学, 2004, (06): 843-849.Peng Fangle, Xiao Zhuwang, WenfuLonggang. Analysis of deformation and failure mechanism of geogrid reinforced sand [J] Geotechnical Mechanics. 2004, (06): 843-849(in Chinese)
    [28] ALI M M, 刘正初, 唐守伟. 利用黄麻防治土壤侵蚀达到新水平[J]. 土壤学进展, 1989, (02): 57-58. (ALI M M, Liu Zhengchu, Tang Shouwei. Using Jute to Control Soil Erosion to a New Level [J] Progress in Soil Science. 1989, (02): 57-58(in Chinese))
    [29] 杨明武. 常兴煤矿工业场地滑坡成因与治理[J]. 煤炭工程. 2015, 47(03): 26-7+31.Yang Mingwu. Causes and Treatment of Landslides in the Industrial Site of Changxing Coal Mine [J]. Coal Engineering. 2015, 47 (03): 26-7+31(in Chinese)
    [30] Guo L., Zhang M., Liao M., Wang B., He X., Peng Y., ... & Li, T. 2023. Investigation of additive-assisted microbial-induced calcium carbonate precipitation in 3D printed cross fractures. Geomechanics for Energy and the Environment, 100450. https://doi.org/10.1016/j.gete.2023.100450
    [31] 王子玉, 喻文晔, 齐超楠, 赵翔宇. 海水环境下 MICP 的反应机理与影响因素[J]. 土木与环境工程学报(中英文), 2022, 44(5): 128-135Wang Ziyu, Yu Wenye, Qi Chaonan, Zhao Xiangyu. Reaction mechanism and influencing factors of MICP in seawater [J]. Journal of Civil and Environmental Engineering, 2022, 44 (5): 128-135
    [32] EmmanuelSalifu, MacLachlanErica,and Kannan R. Iyeret al. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation[J].Engineering Geology, 2016.DOI:10.1016/j.enggeo.2015.12.027.
    [33] Yang Yang, Chu Jian , Xiao Yang ,Liu Hanlong, Cheng Liang.Seepage control in sand using bioslurry[J]. Construction and Building Materials, 2019, 212(JUL.10):342 349. DOI:10.1016/j.conbuildmat.2019.03.313.
    [34] 王殿龙,唐朝生,泮晓华,等.纤维加筋MICP固化钙质砂的抗拉强度特性研究[J].高校地质学报, 2021, 27(6):9.DOI:10.16108/j.issn1006-7493.2020211.
    [35] 周应征, 管大为, 成 亮. (2021). 微生物诱导碳酸盐在土体加固中的应用进展. 高校地质学报, 27(6), 697-706. https://geology.nju.edu.cn/CN/10.16108/j.issn1006-7493.2020116
    [36] Cheng L, Shahin M A and Mujah D. 2017. Influence of key environmental conditions on microbially induced cementation for soil stabilization [J]. Journal of Geotechnical and Geoenvironmental Engineering, 143(1): 04016083.
    [37] Nemati M and Voordouw G. 2003. Modification of porous mediapermeability, using calcium carbonate produced enzymatically insitu [J]. Enzyme and Microbial Technology, 33(5): 635-642.
    [38] GB/T 28592-2012.降水量等级[S].中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会,2012.
    [39] [06] 29
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:144
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-28
  • 最后修改日期:2024-04-11
  • 录用日期:2024-04-11
文章二维码