低光照条件下基于迭代Otsu法的桥梁结构动挠度视觉测量
CSTR:
作者:
作者单位:

中国地震局地震研究所

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),中国地震局地震研究所和应急管理部国家自然灾害防治研究院基本科研业务费专项资助项目


Vision-based Bridge Dynamic Deflection Measurement based on the Iterative Otsu Method under Low Light Conditions
Author:
Affiliation:

Institute of Seismology, China Earthquake Administration

Fund Project:

National Natural Science Foundation of China; Scientific Research Fund from Institute of Seismology, CEA and National Institute of Natural Hazards, Ministry of Emergency Management of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在低光照环境下,目前研究人员多采用LED标靶结合图像阈值方法来解决被测结构表面自然纹理可见度和分辨率下降,进而影响结构动挠度视觉测量精度的问题。但实际应用过程中,周围复杂的环境光线和不良天气均会对结构动挠度视觉测量结果的准确性造成影响。为此,本文提出了一种基于迭代Otsu法的桥梁结构动挠度视觉测量方法,该方法通过多次迭代求解光斑图像ROI区域前景阈值,配合光斑圆形度和帧间面积一致性约束,不断缩小灰度阈值范围,最终找到可有效分离图像前景光斑与背景的理想阈值,并结合灰度质心法准确计算出被测结构动挠度变化。本文首先介绍了基于迭代Otsu法的图像阈值分割原理和结构动挠度计算流程,之后通过一个悬臂梁试验,验证了所提出方法在有强光和雾气干扰的低光照环境下,仍能准确识别出结构动挠度。

    Abstract:

    Currently, researchers employ LED targets combining with image thresholding method to address the issue that the visibility and resolution of structural surface characteristics decrease due to the influence of low-light environment, and finally induce the worse performance for the structural dynamic parameters measurement when using the vision-based technology. However, on the other hand, the complex ambient lighting and unfavorable weather in practical application will inevitably induce the negative effect for the vision-based measurement of the structural parameters. Therefore, in order to deal with this issue, a novel vision-based measurement method was proposed in this paper based on the iterative Otsu algorithm, in which the correct segmentation of the foreground spot and background image with the influence of strong light and fog interference can be realized by iteratively solving the image foreground threshold when combining with the iterative constraints of spot roundness and inter-frame area consistency, and fianlly the structural dynamic deflection can be obtained after collecting the spot center by the gray centroid algorithm. In this paper, the principle of the image thresholding segmentation based on the proposed iterative Otsu algorithm and the corresponding procedure for the structural displacement measurement were introduced at first. Subsequently, a cantilever beam specimen was employed to validate the feasibility and effectiveness of the proposed method, and finally the results demonstrate that the proposed method can realize the accurate identification of the structural dynamic deflection under low light conditions even with the influence of strong light and fog.

    参考文献
    [1] 赵天祺, 勾红叶, 陈萱颖, 等. 桥梁信息化及智能桥梁2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 268-79.ZHAO T Q, GOU H Y, CHEN Y X, et al. State of- the art review of bridge informatization and intelligent bridge in 2020 [J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 268-79. (in Chinese)
    [2] 邓扬, 张强, 钟国强, 等. 桥梁拉索动力响应监测数据质量评价方法分析[J]. 土木与环境工程学报(中英文), 2023: 1-10. DOI: 10.11835/j.issn.2096-6717.2023.080DENG Y, ZHANG Q, ZHONG G Q, et al. Data quality evaluation method for dynamic response monitoring of bridge cables [J]. Journal of Civil and Environmental Engineering, 2023: 1-10. (in Chinese) DOI: 10.11835/j.issn.2096-6717.2023.080
    [3] 刘红波, 张帆, 陈志华, 等. 人工智能在土木工程领域的应用研究现状及展望[J]. 土木与环境工程学报(中英文), 2022: 1-20. DOI:10.11835/j.issn.2096-6717.2022.016LIU H B, ZHANG F, CHEN Z H, et al. Applied research status and prospects of artificial intelligence in civil engineering field [J]. Journal of Civil and Environmental Engineering, 2022: 1-20. (in Chinese) DOI:10.11835/j.issn.2096-6717.2022.016
    [4] 单德山, 罗凌峰, 李乔. 桥梁健康监测2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 129-34.SHAN D S, LUO L F, LI Q. State of-the art review of the bridge health monitoring in 2020 [J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 129-34. (in Chinese)
    [5] WU Z Y, SHENTON H W, MO D A, et al. Integrated Video Analysis Framework for Vision-Based Comparison Study on Structural Displacement and Tilt Measurements [J]. Journal of Structural Engineering, 2021, 147(9): 05021005.
    [6] SHAJIHAN S A V, HOANG T, MECHITOV K, et al. Wireless SmartVision system for synchronized displacement monitoring of railroad bridges [J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(9): 1070-1088.
    [7] LIN C S, HUANG Y C, CHEN S H, et al. The Application of Deep Learning and Image Processing Technology in Laser Positioning [J]. Applied Sciences-Basel, 2018, 8(9): 1542.
    [8] HAN Y T, WU G, FENG D M. Structural modal identification using a portable laser-and-camera measurement system [J]. Measurement, 2023, 214: 112768.
    [9] NIKFAR F, KONSTANTINIDIS D. Evaluation of Vision-Based Measurements for Shake-Table Testing of Nonstructural Components [J]. Journal of Computing in Civil Engineering, 2017, 31(2): 04016050.
    [10] HO H N, LEE J H, PARK Y S, et al. A Synchronized Multipoint Vision-Based System for Displacement Measurement of Civil Infrastructures [J]. Scientific World Journal, 2012, 2012: 519146.
    [11] 徐秀秀, 郭毓, 余臻, 等. 基于机器视觉的柔性臂振动测量研究[J]. 华中科技大学学报(自然科学版), 2013, 41(S1): 129-132.XU X X, GUO Y, YU Z, et al. V ibration measurement of flexible beam based on machine vision [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(S1): 129-132. (in Chinese)
    [12] VICENTE M A, GONZALEZ D C, MINGUEZ J, et al. A novel laser and video-based displacement transducer to monitor bridge deflections [J]. Sensors, 2018, 18(4): 970.
    [13] 李怡岚. 基于视觉的隧道围岩形变量测[D]. 石家庄铁道大学, 2020.
    [14] TIAN L, PAN B. Remote bridge deflection measurement using an advanced video deflectometer and actively illuminated LED targets [J]. Sensors, 2016, 16(9): 1344.
    [15] YANG W J, ZHANG X H, MA H W, et al. Infrared LEDs-Based Pose Estimation With Underground Camera Model for Boom-Type Roadheader in Coal Mining [J].Ieee Access, 2019, 7: 33698-33712.
    [16] MAKSYMENKO O P, SAKHARUK O M, IVANYTSKYI Y L, et al. Multilaser spot tracking technology for bridge structure displacement measuring [J]. Structural Control and Health Monitoring, 2021, 28(3): e2675.
    [17] 杨威. 掘锚机激光导航方法及其关键技术研究[D]. 辽宁工程技术大学, 2022.
    [18] 桂金瑶, 胡国华. 那神经网络的激光三角位移传感器光斑自动定位[J]. 激光杂志, 2020, 41(10): 157-161.GUI J Y, HU G H. Neural network laser triangle displacement sensor spot automatic positioning [J]. Laser Journal, 2020, 41(10): 157-161. (in Chinese)
    [19] OTSU N. Threshold Selection Method From Gray-Level Histograms[J]. Ieee Transactions on Systems Man and Cybernetics, 1979, 9(1): 62-66.
    [20] 赫中营, 徐闻. 基于泊松噪声-双边滤波算法的桥梁裂缝修补痕迹图像分割方法[J]. 土木与环境工程学报(中英文), 2023: 1-13. DOI:10.11835/j. issn.2096-6717.2023.080HAO Z Y, XU W. Image segmentation method of bridge crack repair traces based on Poisson-noise and bilateral-filtering algorithm [J]. Journal of Civil and Environmental Engineering, 2023: 1-13. (in Chinese) DOI:10.11835/j. issn.2096-6717.2023.080
    [21] 袁靖肖, 汪洋. 基于统计学的小尺寸光点质心快速定位算法[J]. 计算机仿真, 2022, 39(3): 407-12.YUAN J X, WANG Y. Fast Centroid Location A lgorithm of Small Size Light Spot Based on Statistics [J]. Computer Simulation, 2022, 39(3): 407-12. (in Chinese)
    [22] 修晟, 张愿, 单伽锃. 基于视觉和振动监测数据融合的结构动态位移识别及其试验验证[J]. 工程力学, 2022,39, 1-9.XIU C, ZHANG Y, SHAN J Z. Vision and Vibration Data Fusion-based Structural Dynamic Displacement Measurement with Test Validation [J]. Engineering Mechanics, 2022,39, 1-9. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:97
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-12
  • 最后修改日期:2023-11-30
  • 录用日期:2023-12-26
文章二维码