盾构切削钢筋混凝土桩基动力响应分析
CSTR:
作者:
作者单位:

1.上海隧道工程有限公司;2.北京交通大学 土木建筑工程学院;3.河海大学土木与交通工程学院

中图分类号:

TU375.4

基金项目:

国家重点基础研究发展计划(973计划)


Dynamic Response Analysis of Shield Cutting Reinforced Concrete Pile Foundation
Author:
Affiliation:

1.Shanghai Tunnel Engineering Company;2.School of Civil Engineering,Beijing Jiaotong University;3.College of Civil and Transportation Engineering,Hohai University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为分析盾构切桩过程中的动力响应特征,以南京地铁10号线盾构穿越群桩工程为背景,结合数值模拟和理论分析,求解盾构切桩冲击荷载诱发的动力响应。同时,在刀盘上安装了振动传感器,对盾构切桩刀盘动力响应进行了监测。主要结论如下:(1)当盾构以5 mm/s左右的推进速度低速切削钢筋混凝土桩基时,推力和扭矩变化较小,且由于桩基为圆柱形,切削断面缓慢增大,因此推力和扭矩表现出明显的滞后性,整个切桩过程中,推力和扭矩峰值约为初始值的1.3倍和1.25倍。(2)仿真结果表明,在刀具多次切削作用下,钢筋切口表现为挤压-拉伸断裂。在冲击荷载作用下,刀盘轴承位置出现多个动力响应波峰,峰值接近0.6g。(3)实测数据表明,在冲击荷载作用下,刀盘轴承位置振动加速度出现连续多次的峰值,间隔约为0.1 s,幅值接近0.5g,实测冲击响应波形与理论解高度相似,两者之间相互验证,该波形可作为多把刀具连续切削钢筋的典型特征。(4)在整个切桩过程中,加速度响应有效值Xrms、峰值XP将显著升高,最大强度约为切削黏土地层时的2倍,且在切桩完成后迅速掉落。相关结论可为盾构切桩状态的识别提供参考。

    Abstract:

    In order to investigate the dynamic response characteristics during shield cutting pile process, the dynamic response induced by shield cutting pile impact load was solved by combining numerical simulation and theoretical analysis with the background of shield crossing group pile project of Nanjing Metro Line 10. Meanwhile, vibration sensors were installed on the cutterhead to monitor the dynamic response of the shield cutting pile. The results show that: (1) When the shield cuts reinforced concrete pile foundation at low speed of about 5 mm/s, the thrust and torque changes are small, and the thrust and torque show obvious hysteresis owing to the fact that the pile foundation is cylindrical and the cutting section increases slowly, and the peak thrust and torque are about 1.3 times and 1.25 times of the initial value. (2) The simulation results show that the rebar incision presents compression-tension fracture under the action of multiple cuts by the cutter. Under the action of impact loading, multiple dynamic response waveforms appear at the cutterhead bearing position with peaks close to 0.6g. (3) The measured data show that under the impact load, the time domain curve of cutterhead vibration acceleration shows several consecutive peaks with an interval of about 0.1 s and an amplitude of 0.5g, the measured impact response waveform is highly consistent with the theoretical solution and verified with each other. The waveform can be used as a typical characteristic of continuous cutting of steel bars by multiple cutters. (4) During the whole pile cutting process, the acceleration response Xrms, peak XP will be significantly higher, and the maximum intensity will be about twice as high as when cutting clay ground, and it will fall off rapidly after the pile cutting is completed. The relevant conclusions can provide a reference for the identification of shield cut pile status.

    参考文献
    [1] 王立新,王强,苗苗,汪珂,李储军,邱军领.盾构隧道下穿高铁路基变形影响规律及加固优化研究[J].道标准设计:1-9[2023-04-28].
    [2] WANG Lixin, WANG Qiang, MIAO Miao, et al. Research on the Deformation Law and Reinforcement Optimization of Shield Tunnel When It Goes Down Through the High-speed Railway Foundation[J].RAILWAY STANDARD DESIGN:1-9[2023-04-28].
    [3] 孟繁增.地铁双洞单线盾构隧道下穿引起既有铁路沉降实测研究[J].道标准设计:1-6[2023-04-28].
    [4] MENG Fanzeng. Field Measurement of Existing Railway Settlement Induced by Subway Double-Tube Single-Track Shield Tunnel Under-Passing[J].RAILWAY STANDARD DESIGN:1-9[2023-04-28].
    [5] Bo Liu, Ting Li, Yanhui Han, et al. DEM-continuum mechanics coupling simulation of cutting reinforced concrete pile by shield machine[J]. Computers and Geotechnics, Volume 152, 2022.
    [6] 王飞, 袁大军, 董朝文, 等. 盾构直接切削大直径钢筋混凝土桩基试验研究[J]. 岩石力学与工程学报, 2013,32(12):2566-2574.
    [7] WANG Fei1, YUAN Dajun, DONG Chaowen, et al. TEST STUDY OF SHIELD CUTTING LARGE-DIAMETER REINFORCED CONCRETE PILES DIRECTLY[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(12):2566-2574.
    [8] 李宏波. 盾构直接切削φ25 mm主筋钢筋混凝土桩基可行性研究[J]. 隧道建设(中英文), 2020, 40(12): 1808-1816.
    [9] LI Hongbo. Feasibility Study on Direct Cutting of Reinforced Concrete Pile Foundation with 025 mm Main Reinforced Bar by Shield[J]. Tunnel Construction, 2020, 40(12): 1808-1816.
    [10] 吴志峰, 刘永胜, 张杰, 等. 盾构直接切除大直径桩基的试验与工程实践[J]. 隧道建设(中英文), 2020, 40(S2): 280-288.
    [11] WU Zhifeng, LIU Yongsheng, ZHANG Jie, et al. Experiment and Engineering Practice of Directly Removing Large-diameter Pile Foundations by Shield[J]. Tunnel Construction, 2020, 40(S2): 280-288.
    [12] 许华国, 陈馈, 孙振川. 盾构刀盘切削钢筋混凝土桩基室内试验研究[J]. 隧道建设(中英文), 2020, 40(01): 35-42.
    [13] XU Huaguo, CHEN Kui, SUN Zhenchuan. Laboratory Test of Reinforced Concrete Pile Foundation Cutting by Shield Cutterhead[J]. Tunnel Construction, 2020, 40(01): 35-42.
    [14] 许宇, 李兴高, 杨益, 等. 盾构切刀切削混凝土过程中的动态响应试验[J]. 哈尔滨工业大学学报, 2021, 53(05): 182-189.
    [15] XU Yu, LI Xinggao, YANG Yi, et al. Dynamic response mechanism of shield cutter in concrete cuttino[J]. Journal of Harbin Institute of Technology, 2021, 53(05): 182-189.
    [16] 袁大军, 王飞, 董朝文, 等. 盾构切削大直径钢筋混凝土桩基新型刀具研究[J]. 中国公路学报, 2016, 29(03): 89-97.
    [17] YUAN Dajiun, WANG Fei, DONG Chaowen, et al. Study on New-style Cutter for Shield Cutting Large-diameter Reinforced Concrete Pile[J]. China Journal of Highway and Transport, 2016, 29(03): 89-97.
    [18] 庄欠伟, 袁一翔, 徐天明, 等. 射流联合盾构切削钢筋混凝土仿真与试验[J]. 岩土工程学报, 2020, 42(10): 1817-1824.
    [19] ZHUANG Qianwei, YUAN Yixiang, XU Tianming, et al. Simulation and experiment on cutting reinforced concrete with jet combined shield method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1817-1824.
    [20] 刘军, 韩旭, 金鑫. 基于颗粒流原理的盾构切割GFRP筋混凝土围护桩机制[J]. 隧道建设(中英文), 2019, 39(S1): 32-37.
    [21] LIU Jun HAN Xu JIN Xin. Mechanism of Shield Cutting GFRP Reinforced Concrete Pile Based on Particle Flow Principle[J]. Tunnel Construction, 2019, 39(S1): 32-37.
    [22] 周济民. 盾构区间隧道下穿高架桥桩基群施工技术与环境影响预测[J]. 现代隧道技术, 2016, 53(01): 165-172.
    [23] ZHOU Jimin. Construction Technology and Environmental lmpact Prediction for a Shield Tunnel under a Viaduct Pile Foundation Group[J]. Modern Tunnelling Technology, 2016, 53(01): 165-172.
    [24] 唐仁, 林本海, 梁鹏. 盾构下穿住宅楼直接切桩的安全性研究[J]. 地下空间与工程学报, 2019, 15(S2): 878-883.
    [25] TANG Ren, LIN Benhai, LIANG Peng. Study on the Safety of Shield Passing through the ResidentialBuilding and Directly Cutting Pile Foundation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 878-883.
    [26] 白东锋, 荆玉明, 薛普恒. 盾构切桩后桩基对管片作用力确定及控制措施[J]. 隧道建设(中英文), 2020, 40(S2): 122-127.
    [27] BAI Dongfeng, JINGYuming, XUE Puheng. Determination of Pile Foundation Force on Shield Tunnel Segments after Pile Cutting and Control Measures[J]. Tunnel Construction, 2020, 40(S2): 122-127.
    [28] 付魁. 盾构切削复合地基对既有房屋的影响[J]. 科学技术与工程, 2022, 22(02): 734-739.
    [29] FU Kui. Influence of Shield Tunnel Undercutting Composite Foundation on Settlement of Existing Buildings[J]. Science Technology and Engineering, 2020, 40(S2): 122-127.
    [30] Xie L X, Lu W B, Zhang Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses[J]. Tunnelling and Underground Space Technology. 2017, 66: 19-33.
    [31] Abdel-Kader M. Modified settings of concrete parameters in RHT model for predicting the response of concrete panels to impact[J]. International Journal of Impact Engineering. 2019, 132: 103312.
    [32] Wang Z L, Huang Y P, Li S Y, et al. SPH-FEM coupling simulation of rock blast damage based on the determination and optimization of the RHT model parameters[J]. IOP conference series. Earth and environmental science. 2020, 570(4): 42035.
    [33] Wang Z, Wang H, Wang J, et al. Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks[J]. Computers and Geotechnics. 2021, 135: 104172.
    [34] Huo J, Zhang Z, Meng Z, et al. Dynamic analysis and experimental study of a Tunnel boring Machine testbed under multiple conditions[J]. Engineering Failure Analysis. 2021, 127: 105557.
    [35] Huo J, Zhang H, Xu Z, et al. Coupling dynamic characteristics of tunnel boring machine cutterhead system with multi-source uncertainties[J]. Engineering Failure Analysis. 2022, 137: 106180.
    [36] Liao J, Zhu X, Yao B. Dynamic modeling of gripper type hard rock tunnel boring machine[J]. Tunnelling and Underground Space Technology. 2018, 71: 166-179.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:47
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-17
  • 最后修改日期:2023-12-25
  • 录用日期:2024-01-27
文章二维码