库水位-降雨耦合作用下凉水井滑坡变形机制研究
CSTR:
作者:
作者单位:

1.重庆大学 土木工程学院;2.重庆市地质矿产勘查开发局南江水文地质工程地质队

中图分类号:

TU375.4

基金项目:

重庆英才创新创业示范团队(2022);中国博士后科学基金资助项目(2021M700608);重庆市自然科学基金项目(cstc2021jcyj-bsh0047);中煤科工重庆设计研究院(集团)有限公司科研项目(No. H20230317)


Mechanism of Liangshuijing landslide deformation under the coupled effect of reservoir water level fluctuation and rainfall
Author:
Affiliation:

1.School of Civil Engineering, Chongqing University;2.Nanjiang Hydro-geology and Engineering Geology. Team of Chongqing Geology Mineral Bureau

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    库水位变化和降雨是影响三峡库区滑坡失稳破坏的主要因素,库区滑坡的变形机制自蓄水以来成为研究的热点。结合凉水井滑坡近年来的监测数据,在考虑滑坡位移阶跃演进变化基础上,利用多年库水位变化和降雨数据,建立了滑坡的水力计算模型,研究了库水位变动和降雨共同作用下滑坡的渗流场、稳定性和位移变化规律,探讨了凉水井滑坡内在变形机制。研究结果表明,滑坡前部和后部的渗流场分别主要受库水位和降雨影响,中部则受到两者的联合作用;滑坡稳定性系数随库水位涨落而呈周期性变化,降雨进一步降低了滑坡整体稳定性;滑坡地表位移呈阶跃式上升趋势,库水位下降引起位移跃迁增长,库水位上升使位移变化趋于稳定。总体上,凉水井滑坡在库水位变动和降雨共同作用下,地下渗流场发生变化引起水力条件改变导致滑坡产生变形,目前滑坡变形主要集中在坡脚处,变形范围逐渐向后延伸,滑坡中后部变形稳定。库水位变化对滑坡变形影响比较明显,库水位变化速率较大的年份,应当注意加强对滑坡变形的预警监测。

    Abstract:

    Reservoir water level fluctuations and rainfall are primary contributors to the destabilization and damage of landslides in the Three Gorges Reservoir area (TGRA). Consequently, the investigation of the landslide deformation mechanism in the TGRA has gained significant attention since the implementation of the Three Gorges Reservoir. By utilizing recent monitoring data and focusing on the stepwise evolution of displacement, this study establishes a hydraulic calculation model for the Liangshuijing landslide. The research incorporates long-term data on reservoir water level fluctuations and rainfall to investigate the seepage field, stability, and displacement patterns under the combined influence of reservoir water level fluctuations and rainfall. Additionally, the study explores the intrinsic deformation mechanism of the Liangshuijing landslide. The results indicate that the seepage field in the front and back of the landslide is primarily influenced by the reservoir water level and rainfall, respectively, while the middle part is affected by the combination of both. The stability coefficient exhibits periodic changes corresponding to the rise and fall of the reservoir water level, and rainfall further diminishes the overall landslide stability. The surface displacement demonstrates an incremental trend, with a decrease in reservoir water level causing the displacement to increase incrementally, while an increase in reservoir water level tends to stabilize the displacement. Overall, the deformation of the Liangshuijing landslide is primarily caused by the reservoir water level fluctuations and rainfall, which subsequently impact the underground seepage field and hydraulic conditions, resulting in deformation. Generally, the current deformation is primarily concentrated at the foot of the slope, gradually extending towards the rear. The stabilization of deformation is observed in the middle and rear regions. Changes in the reservoir water level have a more pronounced impact on landslide deformation, and during years with greater fluctuations in the reservoir water level, it is crucial to enhance early warning monitoring of the deformation.

    参考文献
    [1] YIN Y P, HUANG B L, WANG W P, et al. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 577-595.
    [2] 汤明高, 杨何, 许强, 等. 三峡库区滑坡土体渗透特性及参数研究[J]. 工程地质学报, 2019, 27(2): 325-332.ANG M G, YANG H, XU Q, et al. Permeability and parameters of landslide bodies in Three Gorges Reservoir Area[J]. Journal of Engineering Geology, 2019, 27(2): 325-332.
    [3] 杨何, 汤明高, 许强, 等. 三峡库区石榴树包滑坡近期变形特征与机理分析[J]. 中国地质灾害与防治学报, 2022, 33(1): 67-74.ANG H, TANG M G, XU Q, et al. Recent deformation characteristics and mechanism of the Shiliushubao landslide in the Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 67-74.
    [4] HUANG D, GU D M, SONG Y X, et al. Towards a complete understanding of the triggering mechanism of a large reactivated landslide in the Three Gorges Reservoir[J]. Engineering Geology, 2018, 238: 36-51.
    [5] 刘磊, 殷坤龙, 徐勇, 等. 考虑降雨及库水位变动的区域滑坡灾害稳定性评价研究[J]. 岩石力学与工程学报, 2018, 37(2): 403-414.IU L, YIN K L, XU Y, et al. Evaluation of regional landslide stability considering rainfall and variation of water level of reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 403-414.
    [6] 肖捷夫, 李云安, 胡勇, 等. 库水涨落和降雨条件下古滑坡变形特征模型试验研究[J]. 岩土力学, 2021, 42(2): 471-480.IAO J F, LI Y A, HU Y, et al. Model tests on deformation characteristics of ancient bank landslide under water level fluctuation and rainfall[J]. Rock and Soil Mechanics, 2021, 42: 471-480.
    [7] YAO W M, LI C D, ZUO Q J, et al. Spatiotemporal deformation characteristics and triggering factors of Baijiabao landslide in Three Gorges Reservoir region, China[J]. Geomorphology, 2019, 343: 34-47.
    [8] WANG F W, ZHANG Y M, HUO Z T, et al. The July 14, 2003 Qianjiangping landslide, Three Gorges Reservoir, China[J]. Landslides, 2004, 1(2): 157-162.
    [9] LI Y, Utili S, Milledge D, et al. Chasing a complete understanding of the failure mechanisms and potential hazards of the slow moving Liangshuijing landslide[J]. Engineering Geology, 2021, 281: 105977.
    [10] 王力, 南芳芸, 王世梅, 等. 三峡库区降雨型滑坡入渗特征及变形机制——基于一维和二维模型试验研究[J]. 岩土力学, 2023, 44(5): 1363-1374.WANG, L; NAN, F Y; WANG, Met al S. Infiltration characteristics and deformation mechanism of rainfall-induced landslides in Three Gorges Reservoir Area based on 1D and 2D model tests[J]. Rock and Soil Mechanics, 2023, 44(5): 8.
    [11] 李江, 许强, 王森, 等. 川东红层地区降雨入渗模式与岩质滑坡成因机制研究[J]. 岩石力学与工程学报, 2016, 35(S2): 4053-4062.I J, XU Q, WANG S, et al. Research on rainfall infiltration models of slopes and formation mechanism of rock landslides in red stratum in the east of Sichuan Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35: 4053-4062.
    [12] 汪丁建, 唐辉明, 李长冬, 等. 强降雨作用下堆积层滑坡稳定性分析[J]. 岩土力学, 2016, 37(2): 439-445.ANG D J, TANG H M, LI C D , et al. Stability analysis of colluvial landslide due to heavy rainfall[J]. Rock and Soil Mechanics, 2016, 37(2): 439-445.
    [13] 谭淋耘, 黄润秋, 裴向军. 库水位下降诱发的特大型顺层岩质滑坡变形特征与诱发机制[J]. 岩石力学与工程学报, 2021, 40(2): 302-314.AN L Y, HUANG R Q, PEI X J. Deformation characteristics and inducing mechanisms of a super-large bedding rock landslide triggered by reservoir water level decline in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 302-314.
    [14] 卫童瑶, 殷跃平, 高杨, 等. 三峡库区巫山县塔坪H1滑坡变形机制[J]. 水文地质工程地质, 2020, 47(4): 73-81.EI T Y, YIN Y P, GAO Y. Deformation mechanism of the Taping H1 landslide in Wushan County in the Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 73-81.
    [15] 陈涛, 赵鹏, 王凯, 等. 三峡库区凉水井滑坡成因及复活机制探讨[J]. 工程地质学报, 2014, 22(s1): 277-283.HEN T, ZHAO P, WANG K, et al. Discussion on the formation mechanism of Liangshuijing landslide in the Three Gorges Reservoir area[J]. Journal of Engineering Geology, 2014, 22(s1): 277-283.
    [16] 肖诗荣, 卢树盛, 管宏飞, 等. 三峡库区凉水井滑坡地质力学模型研究[J]. 岩土力学, 2013, 34(12): 3534-3542.IAO S R, LU S S, GUAN H F, et al. Study of geomechanical model of Lianshuijing Landslide in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2013, 34(12): 3534-3542.
    [17] MIAO F S, WU Y P, LI L W, et al. Centrifuge model test on the retrogressive landslide subjected to reservoir water level fluctuation[J]. Engineering Geology, 2018, 245: 169-179.
    [18] WANG H L, XU W Y. Stability of Liangshuijing landslide under variation water levels of Three Gorges Reservoir[J]. European Journal of Environmental and Civil Engineering, 2013, 17(sup1): s158-s177.
    [19] 闵弘, 谭国焕, 戴福初, 等. 蓄水期库岸古滑坡的水动力学响应监测——以三峡库区泄滩滑坡为例[J]. 岩石力学与工程学报, 2004(21): 3721-3726.IN H, TAN G H, DAI F C, et al. Hydrodynamic monitoring of a preexisting landslide during reservoir filling-a case history of Xietan Landslide, the Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2004(21): 3721-3726.
    [20] 向玲, 王世梅, 王力. 动水压力型滑坡对库水位升降作用的响应——以三峡库区树坪滑坡为例[J]. 工程地质学报, 2014, 22(5): 876-882.IANG L, WANG S M, WANG L. Response of typical hydrodynamic pressure landslide to reservoir water level fluctuation:Shuping landslide in Three Gorges Reservoir as an example. Journal of Engineering Geology, 2014, 22(5): 876-882.
    [21] 黄达, 匡希彬, 罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质, 2019, 46(5): 127-135.UANG D, KUANG X B, LUO S L. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 127-135.
    [22] Reid M E, Iverson R M. Gravity-driven groundwater flow and slope failure potential: 2. Effects of slope morphology, material properties, and hydraulic heterogeneity[J]. Water Resources Research, 1992, 28(3): 939-950.
    [23] 刘传正. 累积变形曲线类型与滑坡预测预报[J]. 工程地质学报, 2021, 29(1): 86-95.IU C Z. Three types of displacement-time curves and early warning of landslides[J]. Journal of Engineering Geology, 2021, 29(1): 86-95.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2023-12-27
  • 录用日期:2023-12-27
文章二维码