生产性粉尘颗粒对个体健康影响研究进展及展望
CSTR:
作者单位:

西安建筑科技大学

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目);陕西省青年科技新星项目


Research progress and prospect of effects of productive dust particles on individual health
Author:
Affiliation:

Xi`an University of Architecture and Technology

Fund Project:

National Natural Science Foundation of China; Shaanxi Youth Science and Technology Nova Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来工业作业产生的粉尘颗粒所带来的健康风险负担逐渐加重,大量研究表明长期暴露于生产性粉尘颗粒与劳动者患呼吸系统职业病有密切关联,明确工业建筑室内粉尘颗粒暴露与劳动者不良健康影响的关系,对科学评价工业建筑环境安全和保证劳动者健康具有重要意义。现阶段针对粉尘颗粒毒性和生物学效应的研究使得人们对粉尘颗粒暴露研究的重点已从环境评价逐渐转为以个体健康效应为指标的评价,然而目前工业粉尘颗粒暴露与健康效应关联尚未完全明晰,并且对工业场所接触不同种类和水平粉尘颗粒对健康效应的影响也有待阐明。本文从粉尘颗粒对呼吸系统健康可能造成的损伤、粉尘的暴露健康效应关联及健康风险评价三方面回顾了国内外工业粉尘颗粒健康影响研究的相关进展,明晰了暴露对健康影响作用及目前基于暴露效应模型定量化表征粉尘颗粒作用机制的理论缺失,及有效生物标志物选取的迫切性,为未来科学保护劳动者身体健康、不同类型工业环境监测指南和开发控制改善手段提供参考信息。

    Abstract:

    In recent years, the burden of health risks caused by dust particles generated by industrial operations has gradually increased. A large number of studies have shown that long-term exposure to productive dust particles is closely related to workers' respiratory occupational diseases, and the relationship between indoor exposure to dust particles in industrial buildings and adverse health effects of workers has been clarified. It is of great significance for scientific evaluation of industrial building environmental safety and guarantee of workers' health. At present, the research on toxicity and biological effects of dust particles has gradually shifted the focus of research on dust particle exposure from environmental assessment to individual health effects. However, the correlation between exposure to industrial dust particles and health effects has not yet been fully clarified, and the impact of exposure to different types and levels of dust particles on health effects in industrial sites remains to be clarified. This paper reviews the progress of research on the health effects of industrial dust particles at home and abroad from three aspects: the possible damage caused by dust particles on respiratory system health, the correlation of health effects of dust exposure and health risk assessment, and clarifies the effects of exposure on health and the current theoretical deficiencies in quantifying the mechanism of action of dust particles based on exposure effect models. And the urgency of effective biomarker selection, to provide reference information for the future scientific protection of workers' health, different types of industrial environmental monitoring guidelines and development of control and improvement means.

    参考文献
    [1] SETYAWATI M I, SINGH D, KRISHNAN S P R, et al. Occupational Inhalation Exposures to Nanoparticles at Six Singapore Printing Centers [J]. Environmental Science & Technology, 2020, 54(4): 2389-400.
    [2] GRAHN K, BROBERG K, GUSTAVSSON P, et al. Occupational exposure to particles and biomarkers of cardiovascular disease-during work and after vacation [J]. Int Arch Occup Environ Health, 2022, 95(7): 1537-48.
    [3] LENANDER-RAMIREZ A, BRYNGELSSON I L, VIHLBORG P, et al. Respirable Dust and Silica: Respiratory Diseases Among Swedish Iron Foundry Workers [J]. J Occup Environ Med, 2022, 64(7): 593-8.
    [4] ILO W. WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury, 2000–2016 [J]. International Labour Organization, 2021,
    [5] 中华人民共和国国家卫生健康委员会. 化学物质环境健康风险评估技术指南:WS/T 777—2021 [M]. 2021.
    [6] 规划发展与信息化司. 2021年我国卫生健康事业发展统计公报. [M]. 2022.
    [7] 职业健康司. 全国职业病危害现状统计调查概况 [M]. 2022.
    [8] MCCUNNEY R J, MORFELD P, PAYNE S. What component of coal causes coal workers'' pneumoconiosis? [J]. J Occup Environ Med, 2009, 51(4): 462-71.
    [9] ANTONINI J M, TAYLOR M D, ZIMMER A T, et al. Pulmonary responses to welding fumes: role of metal constituents [J]. J Toxicol Environ Health A, 2004, 67(3): 233-49.
    [10] ENNAN A A, KIRO S A, OPRYA M V, et al. Particle size distribution of welding fume and its dependency on conditions of shielded metal arc welding [J]. Journal of Aerosol Science, 2013, 64:103-10.
    [11] SOLTANPOUR Z, RASOULZADEH Y, MOHAMMADIAN Y. Occupational Exposure to Metal Fumes Among Iranian Welders: Systematic Review and Simulation-Based Health Risk Assessment [J]. Biol Trace Elem Res, 2022, 201(3): 1090-100.
    [12] LIU T, LIU S. The impacts of coal dust on miners'' health: A review [J]. Environ Res, 2020, 190(109849.
    [13] BRAND P, LENZ K, REISGEN U, et al. Number size distribution of fine and ultrafine fume particles from various welding processes [J]. Ann Occup Hyg, 2013, 57(3): 305-13.
    [14] ICRP. Human respiratory tract model for radiological protection [J]. ICRP Publication, 1994, 66.
    [15] HEYDER J, GEBHART J, RUDOLF G, et al. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm [J]. Journal of Aerosol Science, 1986, 17(5): 811-25.
    [16] OU C, LI Y, WEI J, et al. Numerical modeling of particle deposition in ferret airways: A comparison with humans [J]. Aerosol Science and Technology, 2016, 51(4): 477-87.
    [17] ALBUQUERQUE-SILVA I, VECELLIO L, DURAND M, et al. Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons [J]. PLoS One, 2014, 9(4): e95456.
    [18] 刘雅琳, 范彦超, 刘硕. 呼吸暖体假人的设计研发及应用展望 [J]. 暖通空调, 2021, 51(7):118-124,90.
    [19] 曾敏捷. 可吸入颗粒物在人体上呼吸道中运动沉积的数值模拟 [D]; 浙江大学, 2005.
    [20] LIM S H, PARK S, LEE C C, et al. A 3D printed human upper respiratory tract model for particulate deposition profiling [J]. Int J Pharm, 2021, 597(120307).
    [21] DUAN M, WANG L, MENG X, et al. Negative Ion Purifier Effects on Indoor Particulate Dosage to Small Airways [J]. Int J Environ Res Public Health, 2021, 19(1).
    [22] 王海鑫. 高污染环境颗粒物呼吸道吸入和沉积规律研究 [D]; 东南大学, 2021.
    [23] PHUONG N L, ITO K. Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD [J]. Building and environment, 2015, 94(Dec. Pt.2): 504-15.
    [24] DENG Q, OU C, SHEN Y-M, et al. Health effects of physical activity as predicted by particle deposition in the human respiratory tract [J]. Science of The Total Environment, 2019, 657:819-26.
    [25] SU W C, CHEN Y, BEZERRA M, et al. Respiratory deposition of ultrafine welding fume particles [J]. J Occup Environ Hyg, 2019, 16(10): 694-706.
    [26] Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2018, 392(10159): 1789-858.
    [27] 宋从波. 电焊烟尘职业暴露评价及工业卫生预防措施研究 [D]; 南开大学, 2015.
    [28] DONALDSON K, SCHINWALD A, MURPHY F, et al. The biologically effective dose in inhalation nanotoxicology [J]. Acc Chem Res, 2013, 46(3): 723-32.
    [29] KHAN S, GURJAR B R, SAHU V. Deposition modeling of ambient particulate matter in the human respiratory tract [J]. Atmospheric Pollution Research, 2022, 13(10): 101565.
    [30] KUEMPEL E D, O''FLAHERTY E J, STAYNER L T, et al. A biomathematical model of particle clearance and retention in the lungs of coal miners [J]. Regul Toxicol Pharmacol, 2001, 34(1): 69-87.
    [31] COX L A, JR. Nonlinear dose-time-response functions and health-protective exposure limits for inflammation-mediated diseases [J]. Environ Res, 2020, 182(109026).
    [32] 中华预防医学会劳动卫生与职业病分会职业性肺部疾病学组. 尘肺病治疗中国专家共识(2018年版) [J]. 环境与职业医学, 2018, 35(8): 677-89.
    [33] 段肖肖.刘思秀. PM2.5致病机制的研究进展 [J]. 复旦学报(医学版), 2020, Jul.,47(4).
    [34] 任泉仲, 徐立宁, 徐明, et al. 大气细颗粒物导致呼吸系统疾病及相关生物机制的研究进展 [J]. 中国科学:化学, 2018, 48(10): 1260-8.
    [35] HIROTA J A, GOLD M J, HIEBERT P R, et al. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm [J]. Am J Respir Cell Mol Biol, 2015, 52(1): 96-105.
    [36] 周婷. 生产性粉尘致巨噬细胞炎性反应及其与接尘工人健康损害的关系 [D]; 华中科技大学, 2012.
    [37] QI X M, LUO Y, SONG M Y, et al. Pneumoconiosis: current status and future prospects [J]. Chin Med J (Engl), 2021, 134(8): 898-907.
    [38] CAO Z, SONG M, LIU Y, et al. A novel pathophysiological classification of silicosis models provides some new insights into the progression of the disease [J]. Ecotoxicol Environ Saf, 2020, 202(110834).
    [39] KURODA E, ISHII K J, UEMATSU S, et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms [J]. Immunity, 2011, 34(4): 514-26.
    [40] EVANS D E, HEITBRINK W A, SLAVIN T J, et al. Ultrafine and respirable particles in an automotive grey iron foundry [J]. Ann Occup Hyg, 2008, 52(1): 9-21.
    [41] DIMATTEO M, ANTONINI J M, VAN DYKE K, et al. Characteristics of the acute-phase pulmonary response to silica in rats [J]. J Toxicol Environ Health, 1996, 47(1): 93-108.
    [42] WANG H, CUI J, HAO X, et al. Silicon, an important exposure marker in vivo in silicosis research [J]. Int Arch Occup Environ Health, 2021, 94(7): 1513-22.
    [43] SAHU D, VIJAYARAGHAVAN R, KANNAN G M. Silica nanoparticle induces oxidative stress and provokes inflammation in human lung cells [J]. Journal of Experimental Nanoscience, 2014, 10(13): 983-1000.
    [44] COX L A T, JR. Risk Analysis Implications of Dose-Response Thresholds for NLRP3 Inflammasome-Mediated Diseases: Respirable Crystalline Silica and Lung Cancer as an Example [J]. Dose Response, 2019, 17(2): 1559325819836900.
    [45] 苏文进,甘露, 王海椒等. 瓷厂和钨矿生产性粉尘生物学效应的研究 [J]. 中华劳动卫生职业病杂志, 2009, 27(10).
    [46] 姚三巧,陈志远,白玉萍等. 细胞因子在矽肺患者肺泡巨噬细胞培养上清液中的表达及其意义 [J]. 工业卫生与职业病, 2013, 39(5).
    [47] TAN S, YANG S, CHEN M, et al. Lipopolysaccharides promote pulmonary fibrosis in silicosis through the aggravation of apoptosis and inflammation in alveolar macrophages [J]. Open Life Sciences, 2020, 15(1): 598-605.
    [48] GRYTTING V S, REFSNES M, L?G M, et al. The importance of mineralogical composition for the cytotoxic and pro-inflammatory effects of mineral dust [J]. Particle and Fibre Toxicology, 2022, 19(1).
    [49] PARK E-J, YANG M-J, KANG M-S, et al. Subchronic pulmonary toxicity of ambient particles containing cement production–related elements [J]. Toxicology Reports, 2023, 11(116-28).
    [50] SHOEB M, KODALI V, FARRIS B, et al. Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles [J]. Nanotoxicology, 2017, 1-12.
    [51] XIA L, PARK J H, BIGGS K, et al. Compositional variations in metal nanoparticle components of welding fumes impact lung epithelial cell toxicity [J]. Journal of Toxicology and Environmental Health, Part A, 2023, 86(20): 735-57.
    [52] LIBERDA E N, CHEN L C. An evaluation of the toxicological aspects and potential doses from the inhalation of coal combustion products [J]. Journal of the Air & Waste Management Association, 2013, 63(6): 671-80.
    [53] LONG J, STANSBURY R C, PETSONK E L. Small airways involvement in coal mine dust lung disease [J]. Semin Respir Crit Care Med, 2015, 36(3): 358-65.
    [54] D BUCHANAN B G M, C A SOUTAR. Quantitative relations between exposure to respirable quartz and risk of silicosis [J]. Occup Environ Med 2003, 60:159–164.
    [55] VACEK P M, GLENN R E, RANDO R J, et al. Exposure?response relationships for silicosis and its progression in industrial sand workers [J]. Scand J Work Environ Health, 2019, 45(3): 280-8.
    [56] T MANNETJE A, STEENLAND K, ATTFIELD M, et al. Exposure-response analysis and risk assessment for silica and silicosis mortality in a pooled analysis of six cohorts [J]. Occup Environ Med, 2002, 59(11): 723-8.
    [57] ALI OMIDIANIDOST ,MEHDI GHASEMKHANI H K, ET AL. Risk Assessment of Occupational Exposure to Crystalline Silica in Small Foundries in Pakdasht, Iran. [J]. Iran J Public Health, 2016, 45(70-5).
    [58] RAANAN R, ZACK O, RUBEN M, et al. Occupational Silica Exposure and Dose–Response for Related Disorders—Silicosis, Pulmonary TB, AIDs and Renal Diseases: Results of a 15-Year Israeli Surveillance [J/OL] 2022, 19(22).
    [59] RAANAN R, ZACK O, RUBEN M, et al. Occupational Silica Exposure and Dose–Response for Related Disorders—Silicosis, Pulmonary TB, AIDs and Renal Diseases: Results of a 15-Year Israeli Surveillance [J]. International Journal of Environmental Research and Public Health, 2022, 19(22).
    [60] 江桂斌 王春霞, 张爱茜. 大气细颗粒物的毒理与健康效应 [M]. 科学出版社, 2020.
    [61] BERNARD A M, GONZALEZ-LORENZO J M, SILES E, et al. Early decrease of serum Clara cell protein in silica-exposed workers [J]. European Respiratory Journal, 1994, 7(11): 1932-7.
    [62] LIU J, SONG H Y, ZHU B L, et al. The Effect of Silica Dust Exposure on the Serum Clara Cell Protein 16 Levels in Chinese Workers [J]. Biomed Environ Sci, 2019, 32(1): 47-50.
    [63] SARKAR K, DHATRAK S, SARKAR B, et al. Secondary prevention of silicosis and silico-tuberculosis by periodic screening of silica dust exposed workers using serum club cell protein 16 as a proxy marker [J]. Health Sci Rep, 2021, 4(3): 373.
    [64] MIAO R-M, ZHANG X-T, GUO P, et al. Effect of oxidative stress on development of silicosis [J]. Occupation and Health, 2012, 2:1-5.
    [65] JIANG P R, CAO Z, QIU Z L, et al. Plasma levels of TNF-α and MMP-9 in patients with silicosis [J]. Eur Rev Med Pharmacol Sci, 2015, 19(9): 1716-20.
    [66] LEE J S, SHIN J H, LEE J O, et al. Serum Levels of Interleukin-8 and Tumor Necrosis Factor-alpha in Coal Workers'' Pneumoconiosis: One-year Follow-up Study [J]. Saf Health Work, 2010, 1(1): 69-79.
    [67] ZHOU T, RONG Y, LIU Y, et al. Association between proinflammatory responses of respirable silica dust and adverse health effects among dust-exposed workers [J]. J Occup Environ Med, 2012, 54(4): 459-65.
    [68] URSINI C L, FRESEGNA A M, CIERVO A, et al. Occupational exposure to graphene and silica nanoparticles. Part II: pilot study to identify a panel of sensitive biomarkers of genotoxic, oxidative and inflammatory effects on suitable biological matrices [J]. Nanotoxicology, 2021, 15(2): 223-37.
    [69] TEFERA Y, SCHLüNSSEN V, KUMIE A, et al. Personal inhalable dust and endotoxin exposure among workers in an integrated textile factory [J]. Archives of Environmental & Occupational Health, 2020, 75(7): 415-21.
    [70] SAUVAIN J-J, DESLARZES S, STORTI F, et al. Oxidative Potential of Particles in Different Occupational Environments: A Pilot Study [J]. Annals of Occupational Hygiene, 2015, 59(7): 882-94.
    [71] 周烁钕. 人体上呼吸道温湿度对PM2.5水溶性离子及氧化潜势的影响特征 [D]. 东南大学, 2021.
    [72] BATES J T, FANG T, VERMA V, et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects [J]. Environmental Science & Technology, 2019, 53(8): 4003-19.
    [73] TAVAKOL E, AZARI M, ZENDEHDEL R, et al. Risk Evaluation of Construction Workers'' Exposure to Silica Dust and the Possible Lung Function Impairments [J]. Tanaffos, 2017, 16(4): 295-303.
    [74] ORMAN A, KAHRAMAN A, CAKAR H, et al. Plasma malondialdehyde and erythrocyte glutathione levels in workers with cement dust-exposure [corrected] [J]. Toxicology, 2005, 207(1): 15-20.
    [75] OMIDIANIDOST A, GHARAVANDI S, AZARI M R, et al. Occupational Exposure to Respirable Dust, Crystalline Silica and Its Pulmonary Effects among Workers of a Cement Factory in Kermanshah, Iran [J]. Tanaffos, 2019, 18(2): 157-62.
    [76] GRACZYK H, LEWINSKI N, ZHAO J, et al. Increase in oxidative stress levels following welding fume inhalation: a controlled human exposure study [J]. Part Fibre Toxicol, 2016, 13(1): 31.
    [77] BELLO D, CHANETSA L, CRISTOPHI C A, et al. Chronic upper airway and systemic inflammation from copier emitted particles in healthy operators at six Singaporean workplaces [J]. NanoImpact, 2021, 22(100325).
    [78] ANLAR H G, BACANLI M, IRITAS S, et al. Effects of Occupational Silica Exposure on OXIDATIVE Stress and Immune System Parameters in Ceramic Workers in TURKEY [J]. J Toxicol Environ Health A, 2017, 80(13-15): 688-96.
    [79] WESTBERG H, HEDBRANT A, PERSSON A, et al. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area air concentrations in Swedish iron foundries, in particular respirable quartz [J]. Int Arch Occup Environ Health, 2019, 92(8): 1087-98.
    [80] OHLSON C G, BERG P, BRYNGELSSON I L, et al. Inflammatory markers and exposure to occupational air pollutants [J]. Inhal Toxicol, 2010, 22(13): 1083-90.
    [81] YANG F, LIU C, QIAN H. Comparison of indoor and outdoor oxidative potential of PM2.5: pollution levels, temporal patterns, and key constituents [J]. Environment International, 2021, 155.
    [82] FANG T, VERMA V, GUO H, et al. A semi-automated system for quantifying the oxidative potential of ambient particles in aqueous extracts using the dithiothreitol (DTT) assay: results from the Southeastern Center for Air Pollution and Epidemiology (SCAPE) [J]. Atmospheric Measurement Techniques, 2015, 8(1): 471-82.
    [83] 张曼曼, 李慧蓉, 杨闻达. 基于 DTT 法测量广州市区 PM2.5的氧化潜势 [J]. 中国环境科学, 2019, 39(6):2258~226.
    [84] STRAK M, JANSSEN N A H, GODRI K J, et al. Respiratory Health Effects of Airborne Particulate Matter: The Role of Particle Size, Composition, and Oxidative Potential—The RAPTES Project [J]. Environmental Health Perspectives, 2012, 120(8): 1183-9.
    [85] ZAZOULI M A, DEHBANDI R, MOHAMMADYAN M, et al. Physico-chemical properties and reactive oxygen species generation by respirable coal dust: Implication for human health risk assessment [J]. Journal of Hazardous Materials, 2021, 405.
    [86] KHAMRAEV K, CHERIYAN D, CHOI J-H. A review on health risk assessment of PM in the construction industry – Current situation and future directions [J]. Science of The Total Environment, 2021, 758(143716).
    [87] SAHIHAZAR Z M, GHAHRAMANI A, GALVANI S, et al. Probabilistic health risk assessment of occupational exposure to crystalline silica in an iron foundry in Urmia, Iran [J]. Environ Sci Pollut Res Int, 2022, 29(54): 82014-29.
    [88] TONG R, CHENG M, ZHANG L, et al. The construction dust-induced occupational health risk using Monte-Carlo simulation [J]. Journal of Cleaner Production, 2018, 184(598-608).
    [89] MURRAY C J, LOPEZ A D. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study [J]. Lancet, 1997, 349(9063): 1436-42.
    [90] CHEN X, GUO C, SONG J, et al. Occupational health risk assessment based on actual dust exposure in a tunnel construction adopting roadheader in Chongqing, China [J]. Building and Environment, 2019, 165(106415).
    [91] CAVALLO D, URSINI C L, FRESEGNA A M, et al. A follow-up study on workers involved in the graphene production process after the introduction of exposure mitigation measures: evaluation of genotoxic and oxidative effects [J]. Nanotoxicology, 2022, 16(6-8): 776-90.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-28
  • 最后修改日期:2024-03-14
  • 录用日期:2024-03-23
文章二维码