硫化锰活化氧气产生活性氧的种类、动力学及反应机制
DOI:
作者:
作者单位:

1.广东工业大学;2.华南理工大学;3.华南师范大学;4.珠江水利委员会珠江水利科学研究院;5.广东工业大学,华南师范大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(42207244);广东省自然科学基金(2022A1515010195)


Activation of oxygen by manganese sulfide to produce reactive oxygen: species, kinetics and reaction mechanisms
Author:
Affiliation:

1.Guangdong University of Technology;2.South China University of Technology;3.South China Normal University;4.Pearl River Water Resources Research Institute;5.Guangdong University of Technology,South China Normal University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    铁/锰硫矿物广泛存在于缺氧地下环境中,铁(Fe)、锰(Mn)和硫(S)的元素循环过程控制着地下环境的物质循环和能量转化过程。氧气(O2)扰动下,铁硫矿物可通过双电子路径还原 O2 产生活性氧(ROS),但锰硫矿物与 O2 反应产生ROS的反应过程还不清楚。本文以自然界中普遍存在的典型锰硫矿物:硫化锰(MnS)为研究对象,探究MnS活化O2 产生ROS的种类、动力学及反应机制。结果表明,MnS可以活化O2产生大量ROS,包括羟基自由基(?OH)、过氧化氢(H2O2)和超氧阴离子自由基(O2?-)。相同条件下,MnS/O2 体系中产生 ?OH累积量高达389.0 μM,其产量分别是相同摩尔浓度马基诺矿(FeS)和黄铁矿(FeS2)体系的4.4和149.6倍。O2 首先被MnS提供的单电子还原产生O2?-,继而再获得一个电子生成H2O2。溶解性Mn2+催化O2/H2O2产生 ?OH的效率比较低,但结构态Mn(II)可以高效催化H2O2产生 ?OH,因此非均相催化H2O2是产生 ?OH的重要途径。溶解性的S2- 将电子传递至高价态的Mn(III)/Mn(IV),促进了结构态Mn(II)的再生,强化了Mn(II)/Mn(III)电子循环,进而提升了 ?OH的产生效率。以苯酚为目标污染物,MnS/O2体系在3 h内对5 mg/L苯酚的降解效率高达97.4%,表明利用MnS活化O2具有较好的环境修复应用前景。

    Abstract:

    Iron/manganese sulfides widely exist in the anoxic underground environment. The element cycling process of Fe, Mn and S controls the material cycling and energy conversion process in the underground environment. Usually, iron sulfides can produce reactive oxygen species (ROS) with O2 disturbance by providing electrons to reduce O2. However, the specific mechanism of ROS production by the reaction between manganese sulfides and O2 is still unclear. Herein, manganese sulfide (MnS), a prevalent natural form of manganese sulfide minerals, was studied to explore the species, kinetics and reaction mechanisms of ROS generated through the activation of O2 by MnS. The results showed that MnS could activate O2 to produce a large number of ROS, including ?OH, H2O2 and O2?-. The maximum cumulative ?OH reached 389.0 μM using 1 g/L MnS with initial pH 3 at 200 r/min stirring speed, and the yield of ?OH was 4.4 and 149.6 times greater than that of FeS and FeS2 oxygenation under the same molar concentration, respectively. The reduction of O2 by MnS resulted in the generation of O2?- through the transfer of single electron, followed by the acquisition of an additional electron to form H2O2. The dissolved Mn2+ catalyzed O2/H2O2 to produce ?OH with low efficiency, but the structural Mn(II) could efficiently catalyze H2O2 to produce abundant ?OH, indicating that heterogeneous catalysis of H2O2 played an important role in ?OH production. Additionally, the soluble S2- might facilitate electrons transfer to high-valence Mn(III)/Mn(IV) to promote the regeneration of structural Mn (II), which further promoted the production efficiency of ?OH via strengthening the electron cycle of Mn(II) /Mn(III). Furthermore, the degradation efficiency of phenol (5 mg/L) by MnS/O2 system was up to 97.4% within 3 h, indicating that the activation of O2 by MnS showed great potential in the environmental remediation.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-08
  • 最后修改日期:2024-01-21
  • 录用日期:2024-03-06
  • 在线发布日期:
  • 出版日期: