考虑非饱和土水-力耦合行为的加筋路堤降雨湿化变形数值模拟
CSTR:
作者:
作者单位:

1.武汉大学 土木建筑工程学院;2.中铁第四勘察设计研究院有限公司

中图分类号:

TU473.1

基金项目:

国家自然科学基金(No. 52078392、52078236);国家重点研发计划(2022YFC3080400)


Numerical simulation of rainfall-induced deformations of reinforced embankments considering the hydro-mechanical coupled behavior of unsaturated soils
Author:
Affiliation:

1.School of Civil Engineering,Wuhan University;2.China Railway Siyuan Survey and Design Group Co,Ltd

Fund Project:

National Natural Science Foundation of China (No. 52078392, 52078236); National Key R&D Program of China (No. 2022YFC3080400)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文介绍了一个考虑非饱和土水-力耦合行为的本构模型,并通过二次开发嵌入有限差分程序FLAC,根据加载和湿化路径的三轴试验数据对本构模型进行了验证。利用验证的非饱和土本构模型模拟路堤填料,研究了非饱和土加筋路堤在降雨条件下的湿化变形行为,同时对比研究了筋材对路堤湿化变形的影响。研究结果表明:筋材在未加筋区几乎不产生影响,但筋材能有效减小加筋区土体单元的体积应变和剪应变。筋材对路堤中线附近的未加筋区的顶面沉降几乎不产生影响,但是能有效减小路肩处的顶面沉降和路堤边坡的侧向位移。筋材长度越长,其对减小路堤的顶面沉降和路堤边坡的侧向位移效果越好,路堤内部的潜在破坏面距坡面越远。

    Abstract:

    A constitutive model that considers the hydro-mechanical coupled behavior of unsaturated soils was introduced and implemented in the finite difference program FLAC. Triaxial test data involving loading and wetting paths were used to validate the constitutive model implemented in FLAC. Using the validated constitutive model to simulate the embankment fill, the deformation behavior of unsaturated reinforced embankments subjected to rainfall infiltration was investigated. The influence of geosynthetic reinforcement on the wetting-induced deformations of embankments was investigated. The results show that the reinforcements have negligible impact in the unreinforced zone. However, the reinforcements can effectively reduce the volumetric strains and shear strains of the soil elements in the reinforced zone. The reinforcements have a negligible effect on surface settlement in the unreinforced zone near the centerline of embankment but are effective in reducing surface settlement at the shoulder and lateral displacements of embankment slope under rainfall. The longer reinforcements are more efficient in reducing surface settlements of embankment and lateral displacements of slope and could also increase the distance between the slope surface and the potential failure surface.

    参考文献
    [1] 缪林昌. 非饱和土的本构模型研究[J]. 岩土力学, 2007(5): 855-860.MIAO Lin-chang. Research of constitutive model of unsaturated soils[J]. Rock and Soil Mechanics, 2007(5): 855-860.
    [2] Miller G A, Muraleetharan K K, Lim Y Y. Wetting-Induced Settlement of Compacted-Fill Embankments[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1755(1): 111-118.
    [3] Le T M H, Gallipoli D, Sanchez M, et al. Rainfall-induced differential settlements of foundations on heterogeneous unsaturated soils[J]. Géotechnique, 2013, 63(15): 1346-1355.
    [4] 钱纪芸, 张嘎, 张建民, 等. 降雨时黏性土边坡的离心模型试验[J]. 清华大学学报(自然科学版), 2009, 49(6): 829-833.QIAN Ji-yun,ZHANG Ga,ZHANG Jian-min, et al. Centrifuge model tests of cohesive soil slopes during rainfall[J]. Journal of Tsinghua University(Science and Technology), 2009, 49(6): 829-833.
    [5] Wang S, Idinger G, Wu W. Centrifuge modelling of rainfall-induced slope failure in variably saturated soil[J]. Acta Geotechnica, 2021, 16(9): 2899-2916.
    [6] 孔郁斐, 宋二祥, 杨军, 等. 降雨入渗对非饱和土边坡稳定性的影响[J]. 土木建筑与环境工程, 2013, 35(6): 16-21.KONG Yu-fei, SONG Er-xiang, YANG Jun, ZHANG Long-ying, SHI Hong-gang, LIU Jian. Rainfall’s effect on the stability of unsaturated slopes[J]. Journal of Civil and Environmental Engineering, 2013, 35(6): 16-21.
    [7] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
    [8] Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil[J]. Géotechnique, 1995, 45(1): 35-53.
    [9] Chiu C F, Ng C W W. A state-dependent elasto-plastic model for saturated and unsaturated soils[J]. Géotechnique, 2003, 53(9): 809-829.
    [10] 姚仰平, 牛雷, 崔文杰, 等. 超固结非饱和土的本构关系[J]. 岩土工程学报, 2011, 33(6): 833-839.YAO Yang-ping, NIU Lei, CUI Wen-jie, et al. UH model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 833-839.
    [11] Sivakumar V, Wheeler S J. Influence of compaction procedure on the mechanical behaviour of an unsaturated compacted clay. Part 1: Wetting and isotropic compression[J]. Géotechnique, 2000, 50(4): 359-368.
    [12] Sun D, Sun W, Xiang L. Effect of degree of saturation on mechanical behaviour of unsaturated soils and its elastoplastic simulation[J]. Computers and Geotechnics, 2010, 37(5): 678-688.
    [13] Wheeler S J. Inclusion of specific water volume within an elasto-plastic model for unsaturated soil[J]. Canadian Geotechnical Journal, 1996, 33(1): 42-57.
    [14] Lee I M, Sung S G, Cho G C. Effect of stress state on the unsaturated shear strength of a weathered granite[J]. Canadian Geotechnical Journal, 2005, 42(2): 624-631.
    [15] Gallipoli D, Wheeler S J, Karstunen M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105-112.
    [16] Sun W, Sun D. Coupled modelling of hydro-mechanical behaviour of unsaturated compacted expansive soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(8): 1002-1022.
    [17] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(11): 3217-3231.SUN De-an. Hydro-mechanical behaviours of unsaturated soils and their elastoplastic modelling[J]. Rock and Soil Mechanics, 2009, 30(11): 3217-3231.
    [18] Gallipoli D, Gens A, Sharma R, et al. An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour[J]. Géotechnique, 2003, 53(1): 123-135.
    [19] Wheeler S J, Sharma R S, Buisson M S R. Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils[J]. Géotechnique, 2003, 53(1): 41-54.
    [20] 马田田, 韦昌富, 陈盼, 等. 非饱和土毛细滞回与变形耦合弹塑性本构模型[J]. 岩土力学, 2012, 33(11): 3263-3270.MA Tian-tian, WEI Chang-fu, CHEN Pan, et al. An elastoplastic constitutive model of unsaturated soils with capillary hysteresis and deformation coupling[J]. Rock and Soil Mechanics, 2012, 33(11): 3263-3270.
    [21] Costa L M, Alonso E E. Predicting the Behavior of an Earth and Rockfill Dam under Construction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 851-862.
    [22] Rutqvist J, Ijiri Y, Yamamoto H. Implementation of the Barcelona Basic Model into TOUGH–FLAC for simulations of the geomechanical behavior of unsaturated soils[J]. Computers & Geosciences, 2011, 37(6): 751-762.
    [23] Zheng Y, Hatami K, Miller G A. Numerical Simulation of Wetting-Induced Settlement of Embankments[J]. Journal of Performance of Constructed Facilities, 2017, 31(3): D4017001.
    [24] Selvadurai A P S, Gnanendran C T. An experimental study of a footing located on a sloped fill: influence of a soil reinforcement layer[J]. Canadian Geotechnical Journal, 1989, 26(3): 467-473.
    [25] Sharma J S, Bolton M D. Centrifuge modelling of an embankment on soft clay reinforced with a geogrid[J]. Geotextiles and Geomembranes, 1996, 14(1): 1-17.
    [26] 杨广庆, 牛笑笛, 周诗广, 等. 复合式整体刚性面板加筋土挡墙结构行为试验研究[J]. 岩土力学, 2021, 42(7): 1794-1802.YANG Guang-qing, NIU Xiao-di, ZHOU Shi-guang, et al. Experimental study on structural behavior of reinforced retaining wall with composite full-height rigid facing[J]. Rock and Soil Mechanics, 2021, 42(7): 1794-1802.
    [27] Esmaeili M, Naderi B, Neyestanaki H K, 等. Investigating the effect of geogrid on stabilization of high railway embankments[J]. Soils and Foundations, 2018, 58(2): 319-332.
    [28] 张嘎, 王爱霞, 张建民, 等. 土工织物加筋土坡变形和破坏过程的离心模型试验[J]. 清华大学学报(自然科学版), 2008, 48(12): 2057-2060.ZHANG Ga, WANG Ai-xia, ZHANG Jian-min, et al. Centrifuge modeling of the failure of geotextile-reinforced slopes[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(12): 2057-2060.
    [29] 杨庆, 季大雪, 栾茂田, 等. 土工格栅加筋路堤边坡结构性能模型试验研究[J]. 岩土力学, 2005(8): 1243-1246+1252.YANG Qing, JI Da-xue, LUAN Mao-tian, et al. Studies on structural performance of embankment slopes reinforced by geogrids with model tests[J]. Rock and Soil Mechanics, 2005(8): 1243-1246+1252.
    [30] Sun D, Sheng D, Sloan S W. Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils[J]. Mechanics of Materials, 2007, 39(3): 212-221.
    [31] Thvan Genuchten M. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [32] Bishop A W, Blight G E. Some Aspects of Effective Stress in Saturated and Partly Saturated Soils[J]. Géotechnique, 1963, 13(3): 177-197.
    [33] Nuth M, Laloui L. Advances in modelling hysteretic water retention curve in deformable soils[J]. Computers and Geotechnics, 2008, 35(6): 835-844.
    [34] 中华人民共和国交通运输部. 公路路基设计规范: JTG D30-2015[S].北京: 人民交通出版社股份有限公司, 2015.
    [35] Zheng Y, Li F, Niu X, et al. Numerical investigation of the interaction of back-to-back MSE walls[J]. Geosynthetics International, 2023, 30(4): 382-397.
    [36] Zheng Y, Fox P J. Numerical Investigation of the Geosynthetic Reinforced Soil–Integrated Bridge System under Static Loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(6): 04017008.
    [37] Yang G Q, Liu H, Zhou Y T, et al. Post-construction performance of a two-tiered geogrid reinforced soil wall backfilled with soil-rock mixture[J]. Geotextiles and Geomembranes, 2014, 42(2): 91-97.
    [38] Zhao D, Zha J, Wu J. Changes in daily and cumulative volumetric rainfall at various intensity levels due to urban surface expansion over China[J]. Tellus A: Dynamic Meteorology and Oceanography, 2020, 72(1): 1-21.
    [39] 中华人民共和国交通运输部. 公路路基施工技术规范: JTG 3610-2019[S]. 北京: 人民交通出版社股份有限公司, 2019.
    [40] Tatsuoka F, Gomes Correia A. Importance of controlling the degree of saturation in soil compaction linked to soil structure design[J]. Transportation Geotechnics, 2018, 17: 3-23.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-03
  • 最后修改日期:2024-02-27
  • 录用日期:2024-03-23
文章二维码