盾构隧道壁后注浆智能检测的“云-边-端”架构及应用
DOI:
CSTR:
作者:
作者单位:

1.同济大学;2.中铁十五局

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2023YFC3806705);国家自然科学基金(52038008; 52378408);上海市科委项目(22dz1203004);国网上海市电力公司项目 (52090W23000B);


Cloud-Edge-End Architecture and Application for Intelligent Detection of Backfill Grouting of Shield Tunnels
Author:
Affiliation:

1.Tongji University;2.China Railway 15th Bureau Group Co.Ltd

Fund Project:

National Key R&D Program of China (No. 2023YFC3806705); National Natural Science Foundation of China (No. 52038008; 52378408); Science and Technology Innovation Plan of Shanghai Science and Technology Commission (No. 22dz1203004); State Grid Shanghai Municipal Electric Power Company (No. 52090W23000B)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着我国城市轨道交通的不断发展,盾构隧道的建设需求不断增加。为保证隧道施工安全和壁后注浆质量合格,克服人工探地雷达(Ground Penetrating Radar, GPR)检测低效率的缺点,提出车架随行式检测机构实现壁后注浆质量GPR自动化快速检测;对机构硬件组成、工作模式和主要参数进行了详细说明。提出基于模型试验获取高质量带标签的GPR数据,采用基于A扫描和B扫描的机器学习模型训练策略,实现了人工智能模型的良好性能。提出基于“云-边-端”架构的壁后注浆智能化检测方法,并开发了基于部分“云-边-端”架构的GPR-AI Master平台,实现对AI模型的云上部署和应用。提出了基于车架随行式检测机构智能化应用的动态反馈机制,实现隧道掘进的全程守护,在国内外多个工程进行了应用。

    Abstract:

    With the continuous development of urban rail transit in China, the demand for shield tunnel construction is increasing steadily. To ensure the safety of tunnel construction and the quality of backfill grouting meet standards, and to overcome the inefficiency of traditional manual GPR detection, the Loaded-to-Frame detection equipment is proposed to achieve automated rapid GPR inspection of backfill grouting quality. Detailed explanations are provided regarding its hardware composition, operational mode, and key recommended parameters. High-quality labeled GPR data is acquired based on model experiments, and machine learning model training tactics based on A-scan and B-scan are employed to achieve satisfactory performance of the artificial intelligence (AI) model. The "cloud-edge-end" architecture for intelligent backfill grouting detection is introduced; and the GPR-AI Master based on a partial "cloud-edge-end" architecture is proposed to enable cloud-based deployment and application of AI models. The dynamic feedback mechanism for intelligent applications based on the Loaded-to-Frame detection equipment is introduced, enabling overall tunnel excavation safety and application in numerous projects domestically and internationally.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-10
  • 最后修改日期:2024-06-06
  • 录用日期:2024-06-29
  • 在线发布日期:
  • 出版日期:
文章二维码