一种用于水净化的新型微生物诱导碳酸钙过滤器
CSTR:
作者:
作者单位:

1.江苏大学环境与安全工程学院;2.重庆大学土木工程学院,重庆大学溧阳智慧城市研究院


A novel microbial induced calcium carbonate filter for water purification
Author:
Affiliation:

1.School of Environment and Safety Engineering,Jiangsu University;2.School of Civil Engineering,Chongqing University,Institute for Smart City of Chongqing University in Liyang

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目前,过滤是污水处理厂常用的一种处理方法。根据过滤介质材料和性质的不同,过滤可分为四大类:微滤、超滤、纳滤和反渗透。本研究的目的是通过微生物诱导碳酸钙沉淀(MICP)过程开发一种新型多孔 CaCO3 膜过滤器。这种基于膜的过滤器旨在去除微生物并消除溶液中的胞外聚合物(EPS)。实验结果表明,MICP 驱动的多孔 CaCO3 过滤器能高效去除大肠杆菌、布氏杆菌和活性污泥,去除率分别约为 99.998%、99.983% 和 99.996%。 与普通滤纸相比,它还具有更强的 EPS 去除能力。此外,经 MICP 处理的生物浆料还具有理想的孔隙空间、无阻塞性和高渗透性。

    Abstract:

    Currently, filtration is a commonly used treatment method in wastewater treatment plants. Based on the differences in the materials and properties of filtration media, filtration can be classified into four main categories: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. The objective of this study is to develop a novel type of porous CaCO3 membrane-filter through the process of microbial-induced calcium carbonate precipitation (MICP). The membrane-based filter is designed to remove microorganisms as well as eliminate extracellular polymeric substances (EPS) from solution. The experimental findings demonstrate that MICP driven porous CaCO3 filter is highly efficient in eliminating Escherichia coli, Brachybacterium sp., and activated sludge, with removal rates of about 99.998%, 99.983% and 99.996%, respectively. It also exhibits superior EPS removal capability compared to general filter paper. Additionally, the MICP-treated bioslurry possesses desirable pore space, non-blocking features, and high permeability.

    参考文献
    [1] A ., D. and K. A., Fabrication of ball clay based low-cost ceramic membrane supports and their characterization for microfiltration application. Journal of the Indian Chemical Society, 2022. 99(7).
    [2] Xiaolei Z. , et al., Mitigation of reverse osmosis membrane fouling by electrochemical-microfiltration- activated carbon pretreatment . Journal of Membrane Science, 2022. 656.
    [3] Sun-A A. , et al., Evaluation of the advanced oxidation process integrated with microfiltration for reverse osmosis to treat semiconductor wastewater . Process Safety and Environmental Protection, 2022. 162.
    [4] Salahi A. , et al., Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater . Desalination, 2010. 262(1).
    [5] Kaniganti, et al., Microfiltration of Synthetic Bacteria Solution Using Low Cost Ceramic Membranes . Separation Science and Technology, 2015. 50(1).
    [6] Abbasi M . and TaheriA., Modeling of permeation flux decline during oily wastewaters treatment by MF-PAC hybrid process using mullite ceramic membranes. Indian Journal of Chemical Technology, 2014. 21(1).
    [7] A, S., et al ., Carbon nanotube filters . Nature materials, 2004. 3(9).
    [8] Mwabi J.K. , MombaM .N.B., and MambaB.B., Removal of Escherichia coli and Faecal Coliforms from Surface Water and Groundwater by Household Water Treatment Devices/Systems: A Sustainable Solution for Improving Water Quality in Rural Communities of the Southern African Development Community Region. International Journal of Environmental Research and Public Health, 2012. 9(1).
    [9] Liu J. , et al., Passage and community changes of filterable bacteria during microfiltration of a surface water supply . Environment International, 2019. 131(C).
    [10] Yang Y. , et al., Seepage control in sand using bioslurry . Construction and Building Materials, 2019. 212.
    [11] Cheng L . and ShahinM.A., Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Canadian Geotechnical Journal, 2016. 53(9).
    [12] Masuko T. , et al., Carbohydrate analysis by a phenol–sulfuric acid method in microplate format . Analytical Biochemistry, 2004. 339(1).
    [13] Taylor K .A.C.C., A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances. Applied Biochemistry and Biotechnology, 1995. 53(3).
    [14] Chaoyang W. , et al., Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery . International journal of pharmaceutics, 2006. 308(1-2).
    [15] Yao M. , ZhangK., and CuiL., Characterization of protein–polysaccharide ratios on membrane fouling . Desalination, 2010. 259(1).
    [16] Maximous N. , NakhlaG., and WanW., Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications . Journal of Membrane Science, 2009. 339(1).
    [17] Yang Y. , et al., Construction of Water Pond Using Bioslurry-Induced Biocementation . Journal of Materials in Civil Engineering, 2022. 34(3).
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:70
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-25
  • 最后修改日期:2024-05-22
  • 录用日期:2024-05-27
文章二维码