高层建筑饰面砖空鼓缺陷无人机识别关键参数试验研究
作者:
作者单位:

西南交通大学土木工程学院

中图分类号:

xxx

基金项目:

国家自然科学基金资助(52308330);四川省建筑设计研究院有限公司科研项目(KYYN202231)


Experimental research on key parameters for UAV identification of hollowing defects in facade tiles of high-rise buildings
Author:
Affiliation:

School of Civil Engineering,Southwest Jiaotong University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了应对当前高层建筑外墙饰面砖频繁脱落造成的公共安全隐患,通过归纳总结饰面砖缺陷的成因机理,明确了空鼓缺陷为外墙脱落的前骤。基于无人机搭载红外热成像技术,通过开展空鼓缺陷检测室内试验,研究了无人机的最佳观测姿态,揭示了无人机旋翼工作对外墙温度的影响规律,探明了空鼓缺陷特征参数对识别效果的影响,提出了一种基于温差阈值的外墙饰面砖空鼓快速识别方法。研究表明:当无人机距外墙的距离为2~3m,立面观测角度为-30~30°、平面观测角度为-15~15°时,观测效果最佳;无人机旋翼会使外墙降温增速10%;空鼓尺寸越大、埋深越浅、厚度越大,识别效果越好;黑色和红色饰面砖内的空鼓缺陷温度偏高,淡黄色饰面砖内的空鼓缺陷温度偏低。在此基础上,开展了室外试验,通过与可见光图像识别方法进行对比,验证了所提出检测方法的有效性,为高层建筑饰面砖空鼓缺陷的快速识别提供了新途径。

    Abstract:

    To mitigate the safety hazards posed by the frequent detachment of facade tiles in high-rise buildings, this study summarized the causes of these defects, identifying hollowing defects as precursors to exterior wall detachment. Based on the UAV equipped with infrared thermal imaging technology, the study conducted laboratory testing of hollowing detection. The optimal observation attitude of the UAV was investigated. The impact of defect characteristic parameters on identification accuracy and the effect of UAV rotor operation on the temperature of external walls were evaluated. Additionally, a rapid identification method for hollowing was proposed using a temperature difference threshold. The study indicated that optimal observation occurs when the UAV is 2 to 3 meters from the external wall, with a vertical angle of -30 to 30° and a horizontal angle of -15 to 15°. The drone rotors increase the cooling rate of external walls by 10%. Recognition improves with hollowing of larger sizes, shallower depths, and greater thicknesses. Hollowing defects in black and red tiles displayed higher temperatures, while those in yellowish tiles exhibited lower temperatures. On this basis, outdoor testing was conducted to verify the effectiveness of the proposed detection method by comparing it with visible light image recognition, which provides a novel approach for the rapid identification of hollowing defects in facade tiles of high-rise buildings.

    参考文献
    [1] 王璞瑾,肖建庄,段珍华等.建筑物外立面损伤检测智能化发展趋势[J].建筑科学与工程学报, 2022, 39(04): 24-37.WANG Pujin, XIAO Jianzhuang, DUAN Zhenhua, et al. Intelligent Development Trend of Building Enclosure Damage Detection[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 24-37.
    [2] 建筑工程饰面砖粘结强度检验标准:JGJ / T 110-2017[S].北京:中国建筑工业出版社,2017.Testing standard for adhesive strength of tapestry brick of construction engineering: JGJ / T 110-2017[S]. Beijing: China Architecture Building Press, 2017.
    [3] 朱庆,尚琪森,胡翰,等.三角网模型多目标加权最短路径的特征线提取[J].西南交通大学学报,2021,56(01):116-122.ZHU Qing, SHANG Qisen, HU Han, et al. Feature Line Extraction from 3D Model of Oblique Photogrammetry Based on Multi-Objective Weighted Shortest Path [J]. JournalSofSSouthwestSJiaotongSUniversity, 2021, 56(01): 116-122.
    [4] 王家亮,董楷,顾兆军,等.基于极大化思想的无人机安全避障域识别算法[J].西南交通大学学报, 2023, 58(06): 1267-1276.WANG Jialiang, DONG Kai, GU Zhaojun, et al. Recognition Algorithm of Safe Obstacle Avoidance Domain for UAVs Based on Maximization Idea[J]. JournalSofSSouthwest JiaotongSUniversity, 2023, 58(06): 1267-1276.
    [5] Omar T, Nehdi M L. Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography[J]. Automation in Construction, 2017, 83: 360-371.
    [6] 王俊伟,周云,赵鸿等.既有建筑外墙无人机检测技术应用[J].住宅科技,2020,40(01):39-42.WANG Junwei, ZHOU Yun, ZHAO Hong, et al. Technology Application in Exterior Wall Detection of Existing Building by Unmanned Aerial Vehicle[J]. Housing Science. 2020,40(01):39-42.
    [7] 周斌,陆斌,夏超凡.无人机红外热成像法在高层建筑外墙保温缺陷检测中应用研究[J].中国科技期刊数据库工业A, 2022(7): 0205-0208.ZHOU Bin, LU Bin, XIA Chaofan. Research on the application of drone infrared thermography in the detection of exterior wall insulation defects in high-rise buildings[J]. China Science and Technology Journal Database Industry A,2022(7):0205-0208.
    [8] Wetzel A, Zurbriggen R, Herwegh M, et al. Long-term study on failure mechanisms of exterior applied tilings[J]. Construction and Building Materials, 2012, 37: 335-348.
    [9] Mahaboonpachai T , Matsumoto T , Inaba Y. Investigation of interfacial fracture toughness between concrete and adhesive mortar in an external wall tile structure[J].International Journal of Adhesion Adhesives, 2010, 30(1):1-9.
    [10] Melo A C , Silva A J D C E , Torres S M ,et al. Influence of the contact area in the adherence of mortar-Ceramic tiles interface[J]. Construction and Building Materials, 2020, 243.
    [11] Garrido I , Barreira E , Almeida R M S F ,et al. Introduction of active thermography and automatic defect segmentation in the thermographic inspection of specimens of ceramic tiling for building facades[J]. Infrared physics and technology, 2022(121-): 121.
    [12] 蒋俣,魏晓斌,孙正华等.装配式混凝土叠合构件缺陷无损检测技术研究[J].建筑结构, 2022, 52(S01): 2144-2149.JIANG Yu, WEI Xiaobin, SUN Zhenghua , et al. Study on non-destructive testing methods for composite slabs and wall panels in precast concrete structure[J]. Building Structure, 2022, 52(S01): 2144-2149.
    [13] 刘强,胡玉琨,朱红光,易成.基于红外检测的外墙饰面砖粘结质量缺陷识别方法研究[J]. 建筑技术, 2015, 46(10): 924-926.LIU Qiang,HU Yukun,ZhU Hongguang,et al.Research on infrared detection method for adhering quality defect of external wall finishing tile [J]. Architecture Technology, 2015, 46(10) : 924-926.
    [14] 许鑫浩,徐福泉,刘英利等.红外热成像法检测预制混凝土构件外饰面内部缺陷试验研究[J].建筑科学,2021,37(07):52-59.XU Xinhao, XU Fuquan, LIU Yingli, et al. Experimental study on the detection of internal defects of precast concrete components by infrared thermal imaging[J]. Building Science, 2021, 37(07): 52-59.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:90
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-13
  • 最后修改日期:2024-09-27
  • 录用日期:2024-10-16
文章二维码