平原型固废填埋场地下水污染物迁移距离估算
DOI:
CSTR:
作者:
作者单位:

1.浙江大学岩土工程研究所;2.浙江大学超重力研究中心

作者简介:

通讯作者:

中图分类号:

X523

基金项目:

垃圾填埋场碳氢氧稳定同位素分馏规律及其在环境调查中的示踪应用


Estimation of migration distance of groundwater pollutants at plain-type unlined MSW landfill sites
Author:
Affiliation:

1.Institute of Geotechnical Engineering, Zhejiang University;2.Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University

Fund Project:

Stable isotope fractionation of carbon, hydrogen, oxygen at MSW landfills and its tracing application in environmental investigation

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为量化水文地质条件对简易固废填埋场地下水污染物迁移距离的影响,本文基于我国填埋场地概化水文地质模型与地下水环境调查信息,建立适用于数值模拟的三维场地模型。运用正交数值模拟分析方法,模拟计算了三类水文地质类别下平原型简易填埋场发生渗漏后50年的地下水污染物迁移距离,开展了极差分析与方差分析,基于5个水文地质参量建立了50年迁移距离的BP神经网络预测模型。数值模拟分析结果表明,影响填埋场地下水污染物50年迁移距离的关键因素为下卧层渗透系数、堆体底面相对地下水位面高差、堆体渗滤液液位相对地下水位面高差。BP神经网络预测模型判定系数达到0.87,对3个代表性场地的预测与模拟和实测结果相符,表明采用5个关键水文地质参量可预测简易填埋场的地下水污染物50年迁移距离。本文研究结果对各类水文地质环境中平原型简易填埋场的地下水环境调查范围的确定提供了指导。

    Abstract:

    To quantify the impact of hydrogeological conditions on the migration distance of groundwater pollutants at unlined MSW landfill sites, this study established a 3D site-model for numerical simulation based on generalized hydrogeological model for plain-type landfill sites and groundwater pollution characteristics of unlined MSW landfills in China. Through numerical simulations with orthogonal experimental design, the 50-year migration distance of groundwater pollutants at three hydrogeological conditions in plain-type unlined MSW landfills were calculated. Range and variance analysis were conducted, and investigation results of typical site were compared with the numerical results. A BP neural network prediction model for 50-year migration distance was developed based on five hydrogeological parameters. The results of numerical simulations showed that the key factors influencing the 50-year migration distance of groundwater pollutants at unlined landfill sites were the permeability coefficient of the underlying layer, the relative depth of the water table at the landfill site, as well as the leachate table within the waste pile. The BP neural network prediction model reached a coefficient of determination of 0.87, and the prediction of the landfill site case was consistent with the simulated and measured results, indicating that the 50-year migration distance of groundwater pollutants at unlined landfill could be predicted using the five key hydrogeological parameters. The study provided guidance for determining the boundaries of groundwater environmental investigations at plain-type MSW landfill sites.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-27
  • 最后修改日期:2024-07-13
  • 录用日期:2024-07-26
  • 在线发布日期:
  • 出版日期:
文章二维码