碱性富硅生物炭基复合材料吸附Cu(Ⅱ)、Zn(Ⅱ)机理研究
CSTR:
作者:
作者单位:

华侨大学土木工程学院

基金项目:

沿海滩涂复合污染底泥CSGP固化/稳定作用机制及长期效应


Adsorption Mechanism of Cu (II) and Zn (II) on Alkaline Silica-Enriched Biochar Composites
Author:
Affiliation:

School of Civil Engineering, Huaqiao University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    工业废弃物引发的重金属污染问题日益严峻,对人类健康和生态环境造成了深远影响。生物炭在重金属污染修复中展现出较大潜力,但原状生物炭在低pH和高浓度重金属条件下的修复效果有限。为有效应对这一难题,本研究以火龙果皮为前驱体,在500℃条件下热解2小时制备生物炭,并研发了一种名为GBMSs(绿色生物炭-偏高岭土-硅酸钠)的高效绿色吸附剂。响应面法试验结果表明,在pH=2条件下,GBMSs对锌的吸附量高达67.37mg/L,表现出卓越的吸附性能。动力学和等温吸附研究显示,GBMSs对铜和锌的吸附过程与Langmuir模型和伪二阶动力学方程高度吻合,属于均质单分子层表面吸附,吸附速度较快,且吸附量随着pH值增加而增加。通过XRD和SEM-EDS技术深入分析,发现GBMSs的主要吸附机制为化学吸附,离子交换、表面络合、共沉淀等作用起重要作用。综合以上结果,研究证实GBMSs作为一种环保高效的吸附剂,在重金属污染治理方面具有广阔的应用前景。

    Abstract:

    Heavy metal contamination stemming from industrial waste is an increasingly grave issue with extensive repercussions for human health and the ecological environment. Biochar demonstrates significant potential in remedying heavy metal pollution; however, the effectiveness of raw biochar is constrained under low pH and high heavy metal concentrations. To address this challenge effectively, this study utilized dragon fruit peels as precursors to produce biochar through pyrolysis at 500 °C for 2 hours. An efficient green adsorbent, termed GBMSs (green biochar-metakaolin-sodium silicate), was developed. Response surface methodology (RSM) tests revealed that GBMSs exhibited exceptional adsorption performance for zinc, achieving up to 67.37 mg/L at pH=2. Kinetic and isothermal adsorption studies indicated that the adsorption process of GBMSs on Cu and Zn closely followed the Langmuir model and the pseudo-second-order kinetic equation, suggesting surface adsorption of a homogeneous monomolecular layer with a rapid adsorption rate that increased with rising pH. In-depth analysis using XRD and SEM-EDS techniques identified chemisorption as the primary adsorption mechanism, with ion exchange, surface complexation, and co-precipitation playing significant roles. These findings confirm that GBMSs, as an environmentally friendly and efficient adsorbent, holds considerable promise for the treatment of heavy metal pollution.

    参考文献
    [1] 卢洪斌,卢少勇,李响,等.长江中游典型湖泊沉积物重金属分布特征、生态风险评估及溯源[J].环境科学.2024, 45(03):1402-1414.LU H B, LU S Y, LI X, et al. Distribution Characteristics, Ecological Risk Assessment, and Source Tracing of Heavy Metals in the Sediments of Typical Lakes in the Middle Reaches of the Yangtze River[J]. Environmental Science, 45(03), 1402-1414. (in Chinese)
    [2] 安梅,董丽,张磊,等.不同种类生物炭对土壤重金属镉铅形态分布的影响[J].农业环境科学学报.2018, 37(5):892-898.AN M, DONG L, ZHANG L, et al. Influence of different kinds of biochar on Cd and Pb forms in soil [J]. Journal of Agricultural and Environmental Sciences. 2018,37(5), 892-898. (in Chinese)
    [3] 张覃,赵亚娴,杨永,等.府河-白洋淀河湖系统沉积物重金属生态风险评估.环境科学学报[J].2024, 44(03):167-176.ZHANG Q, ZHA0 Y X, YANG Y,et al. The ecological risk assessment of heavy metals in the sediments of Fu River-Baiyangdian Lake system[J]. Acta Scientiae Circumstantiae. 2024,44(03):167-176. (in Chinese)
    [4] Yang D, Deng W, Tan A, et al. Protonation stabilized high As/F mobility red mud for Pb/As polluted soil remediation[J]. Journal of Hazardous Materials,2021 404, 123143.
    [5] Wang Q, Li J, Poon C. An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica☆[J]. Environmental Pollution,2022,313, 120115.
    [6] 中华人民共和国环境保护部.全国土壤污染状况调査公报[EB/0L].[2014-04-17]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htmMinistry of Environmental Protection of the People's Republic of China. National Soil Pollution Survey Bulletin [EB/0L]. (2014-04-17). https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm
    [7] Kumar V, Sharma A, Pandita S, et al. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India[J]. International Journal of Sediment Research, 2020, 35(5):516-526
    [8] 吴伟健,唐云鹏,马桥,等.改性水稻秸秆对溶液中Cd~(2+)的吸附机制研究[J].环境科学学报.2023, 43(12):276-286.WU W J, TANG Y P, MA Q, et al., 2023. Adsorption mechanism of Cd2+ in solution by modified rice straw[J]. Acta Scientiae Circumstantiae, 43(12), 276-286. (in Chinese)
    [9] 李东伟 袁雪 王克浩 杨建 李斗. 化学沉淀-铁氧体法处理重金属废水试验研究[J]. 土木与环境工程学报(中英文), 2007,29(2):90-91109.Li D W, YUAN X, WANG K H, et al. Experiment of the Wastewater Treatment with the Method of Secondary Chemical Precipitation Ferrite[J]. Journal of Civil and Environmental Engineering, 2007,29(2):90-91109. (in Chinese)
    [10] 黄小松, 章荣军, 崔明娟, 等. 巴氏芽孢杆菌生物修复重金属污染溶液试验研究[J]. 土木与环境工程学报, 2022,44(3):160-167.HUANG X S, ZHANG R Z, CUI M J, et al. Experimental investigation on bioremediation of heavy metal contaminated solution by Sporosarcina pasteurii[J]. Journal of Civil and Environmental Engineering, 2022,44(3):160-167. (in Chinese)
    [11] Guo X, Liu H, Zhang J. The role of biochar in organic waste composting and soil improvement: A review[J]. Waste Management, 2020, 102:884-899
    [12] Sirico A, Bernardi P, Sciancalepore C, et al. Biochar from wood waste as additive for structural concrete[J]. Construction and Building Materials, 2021, 303:124500
    [13] Wang L, Chen L, Tsang D C W, et al. Biochar as green additives in cement-based composites with carbon dioxide curing[J]. Journal of Cleaner Production. 2024, 258:120678
    [14] Deng L, Zhang Y, Wang Y, et al. In situ N-, P- and Cacodoped biochar derived from animal bones to boost the electrocatalytic hydrogen evolution reaction[J]. Resour. Conserv. Recycl,2021,170, 105568
    [15] Liang Y, Xu X, Yuan F, et al. Graphene oxide additive-driven widening of microporous biochar for promoting water pollutant capturing[J]. Carbon,2023,205, 40–53.
    [16] Gao R, Fu Q, Hu H, et al. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate[J]. J. Hazard Mater,2019,371, 191–197.
    [17] 靳前. 改性玉米秸秆生物炭对黑土与泥炭土性质及重金属镉铅形态分布的影响[D]. 吉林大学, 2022.JI Q. Effects of Modified Corn Straw Biochar on Properties and Speciation Distribution of Heavy Metals Cadmium and Lead in Black Soil and Peat soil[D]. Changchun,Jilin University, 2022. (in Chinese)
    [18] Wang F, Jin L, Guo C, et al. Enhanced heavy metals sorption by modified biochars derived from pig manure[J]. Sci. Total Environ,2021,786, 147595
    [19] Hu X, Zhang X, Ngo H H, et al. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel[J]. Science of the Total Environment,2020, 707, 135544.
    [20] Zhou X, Shi L, Moghaddam T B, et al. Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar[J]. J. Hazard Mater,2022, 425, 128003
    [21] Wang X, Jia P, Hua Y, et al. Natural organic matter changed the capacity and mechanism of Pb and Cd adsorptions on iron oxide modified biochars[J]. Separ. Purif. Technol.,2023 314, 123625
    [22] Zhang Y, Xiao J, Zhang T C, et al. Synthesis of CuSiO3-loaded P-doped porous biochar derived from phytic acid-activated lemon peel for enhanced adsorption of NH3[J]. Separ. Purif. Technol.,2022, 283, 120179
    [23] Qian K, Kumar A, Zhang H, et al. Recent advances in utilization of biochar[J]. Renewable and Sustainable Energy Reviews, 2015, 42:1055-1064
    [24] Lu Z, Zhang H, Shahab A, et al. Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing Eucalyptus as a precursor[J]. J. Clean. Prod.,2021, 303, 127046
    [25] de la Rosa J M, Rosado M, Paneque M, et al. Effects of aging under field conditions on biochar structure and composition: implications for biochar stability in soils[J]. Sci. Total Environ.,2018, 613–614, 969–976.
    [26] Yang X, Wang L, Guo J, et al. Aging features of metal(loid)s in biochar-amended soil: effects of biochar type and aging method[J]. Sci. Total Environ.,2022, 815, 152922.
    [27] 毛纪鹏,乔怡娜,熊健,等.改性生物炭固定土壤中重金属机理的研究进展[J].应用化工.2024,53(03):722-726+730.MAO J P, QIAO Y N, XIONG J, et al. Advances in research on the mechanism of modified biochar to immobilize heavy metals in soil[J]. Applied Chemical Industry. 2024, 53(03):722-726+730. (in Chinese)
    [28] Fu C, Zhang H, Xia M, et al. The single/co-adsorption characteristics and microscopic adsorption mechanism of biochar-montmorillonite composite adsorbent for pharmaceutical emerging organic contaminant atenolol and lead ions[J]. Ecotoxicol. Environ. Saf.,2020, 187, 109763
    [29] Mai N T, Nguyen A M, Pham N T T, et al. Colloidal interactions of micro-sized biochar and a kaolinitic soil clay[J]. Sci. Total Environ.,2020, 738, 139844
    [30] Srinivasan R. Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water[J]. Adv. Mater. Sci. Eng.,2011, 2011, 1–17.
    [31] Song J, Zhang S, Li G, et al. Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal [J]. J. Hazard Mater.,2022, 391, 121692
    [32] 刘晓凤, 董晓强, 李加时,等. 赤泥改性生物炭修复铅污染土性能研究 [J]. 土木工程学报.2023, 56(z2), 104-114.LIU X F, DONG X Q, LI J S, et al. Study on the performance of red mud modified biochar for remediation of lead contaminated soil[J]. China Civil Engineering Journal. 2023, 56(z2), 104-114. (in Chinese)
    [33] Gao L, & Goldfarb J L. Characterization and adsorption applications of composite biochars of clay minerals and biomass[J]. Environmental Science and Pollution Research, 2021, 28(32), 44277-44287.
    [34] Pukalchik MP, Mercl F, Terekhova V, et al. Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach[J]. Chemosphere,2018, 203, 228-238.
    [35] Dassekpo J M, Ning J, Zha X. Potential solidification/stabilization of clay-waste using green geopolymer remediation technologies[J]. Process Safety and Environmental Protection. 2018, 117: 684-693.
    [36] 安强,蒋韵秋,吴丹青,等.响应面法探究花生壳炭吸附水中镍离子的最优改性条件.重庆大学学报.2018, 41(12):46-54.AN M., DONG L, ZHANG L, et al. Influence of different kinds of biochar on Cd and Pb forms in soil [J]. Journal of Agricultural and Environmental Sciences. 2018, 37(5), 892-898. (in Chinese)
    [37] 中华人民共和国国家环境保护总局.危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007[S].北京中国环境科学出版社,2007. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/wxfwjbffbz/200705/t20070522_103957.shtmlState Environmental Protection Administration of the People's Republic of China. Hazardous Waste Identification Criteria for Leaching Toxicity GB 5085.3-2007 [S]. China Environmental Science Publishing House, Beijing. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/gthw/wxfwjbffbz/200705/t20070522_103957.shtml
    [38] 朱晓丽, 程燕萍, 申烨华, 等. 核桃青皮生物炭对重金属的吸附效应分析[J]. 环境科学.2023, 44(10), 5599-5609.ZHU X L, CHENG Y P, SHEN Y H, et al. Adsorption Performance of Walnut Green Husk Biochar for Heavy Metals[J]. Environmental Science. 2023, 44(10), 5599-5609. (in Chinese)
    [39] 王天董,薛维纳,罗飞,等.我国典型土壤Cr(Ⅵ)吸附-解吸固-液分配系数K_(d)值及其在制定保护地下水的土壤环境基准中的应用探讨[J].环境科学研究.2024,1-13[2024-04-30].WANG T D, XUE W N, LUO F, et al. Solid-Liquid Partition Coefficient(Kd) of Cr(Ⅵ) Adsorption and Desorption in Typical soils of China and its Application in the Development of Groundwater Protection-Based Soil Environmental Criteria[J]. Research of Environmental Sciences. 2024, 1-13[2024-04-30]. (in Chinese)
    [40] 马锋锋, 郑旭东, 张建, 等. 污泥生物炭对水体中磷的吸附[J].中国环境科学.2024, 44(3), 1347-1356.MA F F, ZHENG X D, ZHANG J, et al. Adsorption of phosphate from aqueous solution by sludge biochar[J]. China Environmental Science. 2024, 44(3), 1347-1356. (in Chinese)
    [41] 李亚宁, 郝亚超, 李亮, 等. 响应曲面法优化纳滤去除废水中重金属离子的研究[J]. 膜科学与技术.2020, 40(06), 111-117.LI Y N, HAO Y C, LI L, et al. Optimization of removal of heavy metal ions from high-salt wastewater by nanofiltration using response surface methodology[J]. Membrane Science and Technology. 2020,40(06), 111-117. (in Chinese)
    [42] 刘新,陈卫中,李茂全,等. 响应面法优化壳聚糖对混合液镉铬离子吸附条件的研究[J].食品工业科技.2013, 34(11): 238-242.LIU X, CHEN W Z, LI M Q, et al. Study on adsorption of cadmium and chromium ions from the aqueous solution by response surface methodology with chitosan[J]. Science and Technology of Food Industry. 2013, 34(11): 238-242. (in Chinese)
    [43] Arabyarmohammadi H, Darban A K, Abdollahy M, et al. Utilization of a Novel Chitosan/Clay/Biochar Nanobiocomposite for Immobilization of Heavy Metals in Acid Soil Environment[J]. Journal of Polymers and the Environment, 2018, 26, 2107-2119
    [44] Liu S C, Xie Z L, Zhu Y.T., et al. Adsorption characteristics of modified rice straw biochar for Zn and in-situ remediation of Zn contaminated soil[J]. Environmental Technology & Innovation, 2021, 22, 101388.
    [45] 朱心雨. 鸡蛋壳生物炭制备及其对Cu(Ⅱ)和苯胺吸附研究[D]. 沈阳建筑大学, 2019.Zhu X Y. Preparation of Egg-shell Biochar and Adsorption of Cu (II) and Aniline[D]. Shenyang Jianzhu University, 2019. (in Chinese)
    [46] Tang Y, Alam M S, Konhauser K O, et al. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater[J]. Journal of Cleaner Production, 2019, 209, 927-936.
    [47] 廖路, 吴攀, 王兵, 等.改性生物炭对高浓度锑废水中Sb(Ⅴ)的去除效果[J]. 环境工程学报.2021, 15(02), 435-445.LIAO L, WU P, WANG B, et al. Removal of Sb(V) from antimony-rich wastewater by modified biochar[J]. Chinese Journal of Environmental Engineering, 2021, 15(2)435-445. (in Chinese)
    [48] Cai Y, Zhu M, Meng X, et al. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review[J]. Bioresource Technology, 2022, 351, 126924.
    [49] 刘桃妹, 叶伟, 肖亿金, 等.椰壳生物炭对多种重金属在广东水稻土中的吸附解吸特性影响[J]. 生态毒理学报,2021, 16(4), 342-350.LIU T M, YE W, XIAO Y J,et al. Adsorption and Desorption of Several Heavy Metals in Paddy Soils in Guangdong Province Influenced by Coconut Shell Biochar[J]. Asian Journal of Ecotoxicology, 2021, 16(4), 342-350. (in Chinese)
    [50] Xu D, Cao J, Li Y, et al. Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: A case study on ammonium adsorption capacity[J]. Waste Management, 2019, 87, 652-660.
    [51] 刘振刚, 夏宇, 孟芋含, 等. 生物质炭材料修复重金属污染土壤的研究进展:修复机理及研究热点分析[J]. 环境工程学报.2021, 15(04), 1140-1148.LlU Z G, XIA Y, MENG Y H, et al. Research advances in biomass-based carbon materials for remediation of heavy metal contaminated soil: Immobilization mechanism and analysis of related studies[J]. Chinese Journal of EnvironmentaEngineering, 2021, 15(4):1140-1148. (in Chinese)
    [52] Zhang S, Gu W, Geng Z, et al. Immobilization of heavy metals in biochar by co-pyrolysis of sludge and CaSiO3[J]. Journal of Environmental Management, 2023, 326, 116635.
    [53] Lin M, Li F, Li X, et al. Biochar-clay, biochar-microorganism, and biochar-enzyme composites for environmental remediation: a review[J]. Environmental Chemistry Letters, 2023, 21(3), 1837-1862.
    [54] 杨婷婷,黄艳艳,柳维扬,等. 三种改性小麦秸秆生物炭表征及其对Cu2+ 吸附性能[J]. 农业工程学报,2023, 39(8),222-230.Yang T T, Huang Y Y, Liu W Y, et al. Characterization of three kinds of modified wheat straw derived biochars and their sorption capacity for Cu2+[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8),222-230. (in Chinese)
    [55] 董文菁, 欧阳峰.生物炭复合材料在土壤重金属污染修复领域的研究进展[J]. 四川环境.2022, 41(1), 272-278.DONG A Q, OU Y F. Research Progress of Biochar Composites in Remediation of Soil Heavy Metal Pollution[J]. Sichuan Environment, 2022, 41(1), 272-278. (in Chinese)
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:115
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-07-13
  • 录用日期:2024-09-25
文章二维码