不同胶结液浓度下MICP协同氧化镁固化Zn2+污染红黏土试验研究
CSTR:
作者:
作者单位:

桂林理工大学 土木工程学院

中图分类号:

TU411.3

基金项目:

国家自然科学基金(42262030);广西岩溶动力学重大科技创新基地开放课题(KDL&Guangxi202303);河南省科技研发计划联合基金(225200810005);广西岩土力学与工程重点实验室开放课题(桂科岩2023-XT-02)


Experimental study on MICP and magnesium oxide synergistic solidification of Zn2+ contaminated red clay under different concentrations of cementation solution
Author:
Affiliation:

School of Civil Engineering,Guilin University of Technology

Fund Project:

National Natural Science Foundation of China (No. 42262030); Guangxi Key Science and Technology Innovation Base on Karst Dynamics (No. KDL&Guangxi202303); Henan Science and Technology R&D Program Joint Fund (No. 225200810005); Open Subjects of Guangxi Key Laboratory of Geotechnical Mechanics and Engineering. (No. 桂科岩2023-XT-02)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着工业化进程的加快,Zn2?的污染问题日益严重,对生态系统和工程结构稳定性构成了重大威胁。为了应对这一挑战,本文研究了MICP(Microbially Induced Carbonate Precipitation)协同氧化镁技术对Zn2?污染红黏土的固化效果。采用无侧限抗压强度试验和直接剪切试验,探讨了在不同胶结液浓度、氧化镁掺量及Zn2+浓度下固化土的无侧限抗压强度及抗剪强度指标变化规律;通过离子赋存形态试验,并结合固化前后试样pH值变化情况,分析了MICP协同氧化镁技术对Zn2?的固化效果。结果表明:氧化镁的掺入显著提高了Zn2?污染红黏土的无侧限抗压强度和抗剪强度,当氧化镁掺量为5%时利用率最高。胶结液浓度为1.0 mol/L时,抗压强度和抗剪强度最高。固化试样的抗剪强度指标主要受氧化镁掺量影响。氧化镁的掺入通过提升pH值,促进了MICP过程中碳酸钙的沉淀,同时加速了Zn2?从弱酸提取态向可还原态、可氧化态和残渣态转化。因此,MICP协同氧化镁固化Zn2?污染红黏土具有广泛应用前景,可为污染场地地基处理提供指导。

    Abstract:

    As industrialization accelerates, the pollution problem of Zn2+ is becoming increasingly severe, posing a significant threat to the stability of ecosystems and engineering structures. To cope with this challenge, this paper studies the solidification effect of MICP (Microbially Induced Carbonate Precipitation) combined with magnesium oxide on Zn2+ contaminated red clay. The variation of unconfined compressive strength and shear strength index of solidified soil under different concentrations of cementation solution, magnesium oxide contents and Zn2+ concentrations was discussed by unconfined compressive strength test and direct shear test. The curing effect of MICP combined with magnesium oxide technology on Zn2+ was analyzed by ion occurrence form test and pH value change of samples before and after curing. The results show that the incorporation of magnesium oxide significantly improves the unconfined compressive strength and shear strength of Zn2+ contaminated red clay. When the content of magnesium oxide is 5%, the utilization rate is the highest. When the concentration of cementation solution is 1.0 mol/L, the unconfined compressive strength and shear strength are the highest. The shear strength index of solidified samples is mainly affected by the content of magnesium oxide. The incorporation of magnesium oxide facilitated calcium carbonate precipitation during MICP by elevating the pH value. This process accelerated the transformation of zinc ions from a weak acid-extractable state to reducible, oxidizable, and residual states. Therefore, the combined MICP and magnesium oxide solidification of Zn2+ contaminated red clay holds promising applications and can provide guidance for the remediation of polluted site foundations.

    参考文献
    [1] 黄占斌, 李昉泽. 土壤重金属固化稳定化的环境材料研究进展[J]. 中国材料进展, 2017, 36(11): 840-851.HUANG Zhan-bin, LI Fang-ze. Research progress of environmental materials on solidification and stabilization of heavy metals in soil[J]. Materials China, 2017, 36(11): 840-851. (in Chinese)
    [2] 陈玥如, 高文艳, 陈虹任, 等. 场地重金属污染土壤固化及MICP技术研究进展[J/OL]. 环境科学, 2023, 1-20.CHEN Yue-yan, GAO Wen-yan, CHEN Hong-ren, et al. Research progress on solidification and MICP remediation of soils in heavy metal contaminated site[J/OL]. Environmental Science, 2023, 1-20. (in Chinese)
    [3] SHAO Y, YAN T, WANG K, et al. Soil heavy metal lead pollution and its stabilization remediation technology[J]. Energy Reports, 2020, 6: 122-127.
    [4] WANG Y, LI A, CUI C. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability ScienceDirect[J]. Chemosphere, 2021, 265: 129071.
    [5] JANKAITE A, VASAREVI?IUS S. Remediation technologies for soils contaminated with heavy metals[J]. Journal of Environmental Engineering and Landscape Management, 2005, 13(2): 109-113.
    [6] GAVRILESCU M. Enhancing phytoremediation of soils polluted with heavy metals[J]. Current Opinion in Biotechnology, 2022, 74: 21-31.
    [7] KHALID S, SHAHID M, NIAZi N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Elsevier, 2017, 182: 247-268.
    [8] 刘汉龙, 肖扬. 微生物土力学原理与应用[M]. 北京: 科学出版社, 2022.
    [9] 肖鹏. 微生物温控加固钙质砂动力与液化特性研究[D]. 重庆大学, 2020.XIAO Peng. Study on dynamic and liquefaction charcteristics of temperature controlled MICP-treated calcareous sand[D]. Chongqing University, 2020. (in Chinese)
    [10] 陈敏洁, 曹丹, 李博文, 等. 加速微生物诱导碳酸盐沉淀过程的调控因子筛选及机理初步研究[J]. 有色金属工程, 2023, 13(05): 152-160.CHEN Min-jie, CHAO Dan, LI Bo-wen, et al. Screening and preliminary mechanism study on regulatory factors for accelerating the microbial induced carbonate precipitation process[J]. Nonferrous Metals Engineering, 2023, 13(05): 152-160. (in Chinese)
    [11] DONG Y, GAO Z, WANG D, et al. Optimization of growth conditions and biological cementation effect of Sporosarcina pasteurii[J]. Construction and Building Materials, 2023, 395: 132288.
    [12] 王欣文, 苏超. 产脲酶微生物矿化修复铜污染溶液效果研究[J]. 环境工程, 2023, 41(S2): 651-655, 639.WANG Xin-wen, SU Chao. Mineralization effect of urease-producing microorganisms on copper in solution[J]. Environmental Engineering, 2023, 41(S2): 651-655, 639. (in Chinese)
    [13] BACHMEIER K L, WILLIAMS A E, WARMINGTON J R, et al. Urease activity in microbiologically-induced calcite precipitation[J]. Journal of Biotechnology, 2002, 93(2): 171-181.
    [14] CACCHIO P, ERCOLE C, CAPPUCCIO G, et al. Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil[J]. Geomicrobiology Journal, 2003, 20(2): 85-98.
    [15] OKWADHA G, LI J. Optimum conditions for microbial carbonate precipitation[J]. Chemosphere, 2010, 81(9): 1143-1148.
    [16] 钱春香, 王剑云, 王瑞兴, 等. 微生物沉积方解石的产率[J]. 硅酸盐学报, 2006, (05): 618-621.QIAN Chun-xiang, WANG Jian-yun, WANG Rui-xing, et al. Calcite yield for bacteria induced precipitation[J]. Journal of the Chinese Ceramic Society, 2006, (05): 618-621. (in Chinese)
    [17] 贾强, 丁鹏. 微生物灌浆碳酸钙沉积规律[J]. 建筑材料学报, 2021, 24(03): 578-583, 623.JIA Qiang, DING Peng. Deposition regularities of calcium carbonate on microbial grouting[J]. Journal of Building Materials, 2021, 24(03): 578-583, 623. (in Chinese)
    [18] GAT D, RONEN Z, TSESARSKY M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media[J]. Chemosphere, 2017, 184(oct.): 524-531.
    [19] 吴尚彬, 贾苍琴, 王贵和. 微生物-活性氧化镁固化红黏土试验研究[J]. 人民长江, 2022, 53(08): 167-172.
    [20] ZHAO Y, YAO J, YUAN Z M, et al. Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation[J]. Environmental Science and Pollution Research, 2017, 24(1): 372-380.
    [21] 刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J].岩土工程学报, 2015, 37(01): 148-155.LIU Song-yu, LI Chen. Influence of MgO activity on stabilization efficiency of carbonated mixing method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(01): 148-155. (in Chinese)
    [22] 赖胜强, 林亲铁, 项江欣, 等. 氧化镁基固化剂对铅离子的吸附作用及其影响因素[J]. 环境工程学报, 2016, 10(07): 3859-3865.LAI Sheng-qiang, LIN Qin-tie, XIANG Jiang-xin, et al. Adsorption of Pb2+ on a magnesia-based curing agent and its influencing factors[J]. Chinese Journal of Environmental Engineering, 2016, 10(07): 3859-3865. (in Chinese)
    [23] 毕鹏雁. 固化Zn2+污染红黏土力学与微观特性研究[D]. 桂林理工大学, 2021.BI Peng-yan. Study on mechanical and microscopic properties of solidified Zn2+ polluted red clay[D]. guilin University of Technology, 2021. (in Chinese)
    [24] 刘汉龙, 赵常, 肖杨. 微生物矿化反应原理、沉积与破坏机制及理论:研究进展与挑战[J/OL]. 岩土工程学报, 2023, 1-12.LIU Han-long, ZHAO Chang, XIAO Yang. Reaction principle, deposition and failure mechanisms and theory of biomineralization: progress and challenges[J]. Chinese Journal of Geotechnical Engineering, 2023, 1-12. (in Chinese)
    [25] WEN J, YI Y, ZENG G. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction[J]. Journal of Environmental Management, 2016, 178(aug.1):63-69.
    [26] 许耀东, 章荣军, 黄小松, 等. MICP修复重金属污染溶液及矿化垃圾土试验研究[J/OL]. 土木与环境工程学报(中英文):1-10.XU Yao-dong, ZHANG Rong-jun, HUANG Xiao-song, et al. Experimental investigation on bioremediation of heavy metal contaminated solutions and aged refuse by MICP[J/OL]. Journal of Civil and Environmental Engineering:1-10. (in Chinese)
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-08-19
  • 录用日期:2024-09-11
文章二维码