流态固化淤泥复合胶凝材料配比优化及机理研究
作者:
作者单位:

1.重庆大学 土木工程学院;2.中宝检测技术重庆有限公司;3.上海市政工程设计研究总院集团有限公司

中图分类号:

TU472

基金项目:

重庆英才创新创业示范团队项目(cstc2024ycjh-bgzxm0012);中央高校基本科研业务费资助项目(2023CDJKYJH105);上海市政工程设计研究总院(集团)有限公司科学研究项目(K2023K124A);重庆市建设科技计划项目


Study on the ratio optimization of composite cementing materials and mechanism for fluidized solidified sludge
Author:
Affiliation:

1.School of Civil Engineering,Chongqing University;2.Zhongbao Testing Technology (Chongqing) Co., Ltd;3.Shanghai Municipal Engineering Design Institute (Group) Co., Ltd

Fund Project:

Chongqing Talent Innovation and Entrepreneurship Demonstration Team Projects (cstc2024ycjh-bgzxm0012); The Fundamental Research Funds for the Central Universities (2023CDJKYJH105); Scientific Research Project of Shanghai Municipal Engineering Design Institute (Group) Co., Ltd (K2023K124A); Chongqing Construction Science and Technology Plan Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    流态固化土因其高流动性、自密实、强度可控等特点可解决回填场地狭小、回填空间狭窄等填筑工程难题。流态固化材料主要包括胶凝组分和流动组分,本文主要对流态固化淤泥的胶凝材料配比和机理进行研究。采用矿粉和水泥作为基础胶凝材料,通过双掺试验确定激发剂生石灰和硅酸钠的适宜掺量,借助Design Expert软件进行响应面分析,得到复合胶凝材料的优化配比;通过XRD和SEM试验得到固化淤泥的产物种类和微观结构,分析固化机理。结果表明,复合胶凝材料(CCM)水泥:矿粉:生石灰:硅酸钠的优化配比为38:42:9.7:6.5,采用CCM的流态固化淤泥的流动度和强度均优于仅采用水泥的流态固化淤泥。CCM固化淤泥的水化产物主要包括水化硅酸钙凝胶和钙矾石,水化产物包裹土颗粒并填充孔隙,显著提高了流态固化淤泥的强度。CCM的固化淤泥强度提高包括水化作用、碱激发火山灰反应、离子交换作用、微膨胀和填充作用等。

    Abstract:

    Fluidized solidified soil, due to its high fluidity, self-compaction, and controllable strength, can solve filling engineering problems such as narrow backfill sites and narrow backfill spaces. Fluid solidification materials mainly include cementitious components and flow components. This article mainly studies the cementitious material ratio and mechanism of fluidized solidification sludge. Using slag and cement as basic cementitious materials, the appropriate dosage of activator quicklime and sodium silicate was determined through double mixing experiments. Response surface analysis was conducted using Design Expert software to obtain the optimized ratio of composite cementitious materials; Obtain the types and microstructure of solidified sludge products through XRD and SEM experiments, and analyze the solidification mechanism. The results showed that the optimized ratio of composite cementitious material (CCM) cement: mineral powder: quicklime: sodium silicate was 38:42:9.7:6.5. The flowability and strength of the fluidized solidified sludge using CCM were better than those using only cement. The hydration products of CCM solidified sludge mainly include hydrated calcium silicate gel and ettringite. The hydration products encapsulate soil particles and fill pores, significantly improving the strength of fluid solidified sludge. The strength improvement of CCM solidified sludge includes hydration, alkali induced volcanic ash reaction, ion exchange, micro expansion and filling effects.

    参考文献
    [1] 周永祥,王继忠. 预拌固化土的原理及工程应用前景[J]. 新型建筑材料, 2019, 46(10):117-120.ZHOU Y X, WANG J Z. Principle of ready-mixed solidified soil and its prospects for engineering application[J]. New Building Materials, 2019, 46(10):117-120. (in Chinese)
    [2] 高强. 水泥基流态土固化剂的试验研究[J]. 中国建材科技, 2021, 30(4): 68-73.GAO Q. Technology and application of cement-based fluidic soil curing agent [J]. China Building Materials Science & Technology, 2021, 30(4):68-73. (in Chinese)
    [3] MO L W, ZHANG F, DENG M, et al. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates[J]. Cement and Concrete Composites, 2017, 83: 138-145.
    [4] HANNESSON G, KUDER K, SHOGREN R, et al. The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete[J]. Construction and Building Materials, 2012, 30: 161-168.
    [5] TURNER L K, COLLINS F G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete[J]. Construction and Building Materials, 2013, 43: 125-130.
    [6] BOUAISSI A, LI L Y, MOGA L M, et al. A Review on Fly Ash as a Raw Cementitious Material for Geopolymer Concrete[J]. Revista de Chimie, 2018, 69(7): 1661-1667.
    [7] Zhang Y N, Yang D K, Wang Q J. Performance study of alkali-activated phosphate slag-granulated blast furnace slag composites: effect of the granulated blast furnace slag content[J]. Archives of Civil and Mechanical Engineering, 2023, 23(3): 181.
    [8] JEONG Y, KANG S H, KIM M O, et al. Acceleration of cement hydration from supplementary cementitious materials: Performance comparison between silica fume and hydrophobic silica[J]. Cement and Concrete Composites, 2020, 112: 103688.
    [9] SUN J W ,ZHANG Z Q,HOU G H. Utilization of fly ash microsphere powder as a mineral admixture of cement: effects on early hydration and microstructure at different curing temperatures[J]. Powder Technology, 2020, 375:262-270.
    [10] ZHOU N, MA H B, OUYANG S Y, et al. Influential factors in transportation and mechanical properties of aeolian sand-based cemented filling material[J]. Minerals, 2019, 9(2): 116.
    [11] CHOMPOORAT T, THEPUMONG T, NUAKLONG P, et al. Alkali-activated controlled low-strength material utilizing high-calcium fly ash and steel slag for use as pavement materials[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021178.
    [12] 刘倩,周永祥,王祖琦,等. 稻壳灰-脱硫灰-钢渣复合胶凝材料的制备及在固化土中的应用[J]. 建筑科学, 2022, 38(7): 72-77.LIU Q, ZHOU Y X, WANG Z Q, et al. Preparation of rice husk ash-desulfurization ash-steel slag composite cementitious material and its application in solidified soil[J]. Building Science, 2022, 38(7): 72-77. (in Chinese)
    [13] 陈凤. 赤泥基胶凝材料固化土物理力学性能及微观机理研究[D]. 湖北: 湖北工业大学, 2023.CHEN F. Physical and mechanical properties, and micro-mechanism of soils stabilized with red mud-based cementitious materials[D]. Hubei: Hubei University of Technology, 2023. (in Chinese)
    [14] 申贝. 地聚物胶凝材料固化硫酸盐渍土试验研究[D]. 甘肃: 兰州大学, 2016.SHEN B. Research on Sulphate salty soil Reinforced by Geopolymer[D]. Gansu: Lanzhou University, 2016. (in Chinese)
    [15] 日本道路公团. エアモルタル及びエアミルクの試験方法: JHS A313—1992 [S]. 日本: 日本道路公团, 1992.Japan Highway Public Corporation. Test method of air mortar: JHS A313—1992 [S]. Japan: Japan Highway Public Corporation, 1992. (in Japanese)
    [16] WANG X S, QI S X, DONG B W, et al. Research and Application of Slag–Nanosilica Stabilizer for Silt Subgrade[J]. Applied Sciences, 2021, 11(17): 8014.
    [17] PU S Y, ZHU Z D, WANG H R, et al. Mechanical characteristics and water stability of silt solidified by incorporating lime, lime and cement mixture, and SEU-2 binder[J]. Construction and Building Materials, 2019, 214: 111-120.
    [18] ZHU Z D, PU S Y, ZHANG J H, et al. Water resistance and compressibility of silt solidified with lime and fly-ash mixtures[J]. Environmental Earth Sciences, 2021, 80: 1-14.
    [19] VAKILI M V, CHEGENIZADEH A, NIKRAZ H, et al. Investigation on shear strength of stabilised clay using cement, sodium silicate and slag[J]. Applied Clay Science, 2016, 124: 243-251.
    [20] 苏岳威, 张宁, 吕宪俊, 等. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(z1): 271-276.SU Y W, ZHANG N, LV X J, et al. Effects of Water Glass Modulus on the Hydration Properties and Kinetics ofSlag-based Cementitious Materials[J]. Material Reports, 2020, 34(z1): 271-276. (in Chinese)
    [21] HE J, ZHOU L R, ZHANG L, et al. Effect of Curing Temperature on the Geotechnical Behavior of Solidified Sludge in Landfill Temporary Cover Applications[J]. KSCE Journal of Civil Engineering, 2022, 26(4): 1569-1578
    [22] LIU Y L, SU Y P, XU G Q, et al. Research progress on controlled low-strength materials: metallurgical waste slag as cementitious materials[J]. Materials, 2022, 15(3): 727.
    [23] 王聪聪, 刘茂青, 宋红旗, 等. 赤泥-钢渣粉-水泥固化流态土性能试验研究[J]. 硅酸盐通报, 2023, 42(7): 2488-2496.WANG C C, LIU M Q, SONG H Q, et al. Experimental Study on Properties of Red Mud, Steel Slag Powder and Cement Solidified Fluidized Soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2488-2496.
    [24] 恽文荣, 崔健, 陈玉荣. 浅谈河湖疏浚淤泥资源化的研究现状与展望[J]. 江苏水利, 2015(3): 15-17.YUN W R, CUI J, CHEN Y R, et al. A brief discussion on the research status and prospect of the resource utilization of dredged silt in rivers and lakes[J]. Jiangsu Water Resources, 2015(3): 15-17.
    [25] 肖杰, 向家骏, 刘朝晖, 等. 流态多源固废固化黄土固化剂配比优化及强度形成机理[J/OL]. 中国公路学报, 1-16[2024-08-21].XIAO J, XIANG J J, LIU Z H, et al. Optimization of Curing Agent Mix Ratio and Mechanism of Strength of Fluidized Multi-source Solid Waste Solidified Loesses[J/OL]. 1-16[2024-08-21].
    [26] FANG X W, HE Y, LONG K Q, et al. Mechanism of rapid solidification sludge with soil stabilizer based on calcium sulfoaluminate cement[J]. Journal of Materials in Civil Engineering, 2023, 35(7): 04023160.
    [27] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(z2): 273-277, 298.LI Y P, LI T. Stability Mechanism and Research Progress of Soil Stabilizer[J]. Material Reports, 2020, 34(z2): 273-277, 298. (in Chinese)
    [28] 金胜赫. 工业废渣复合土壤固化剂优化设计及路用性能研究[D]. 浙江: 浙江理工大学, 2023.KIM S H. Study on the optimal design and road performance of an industrial waste residue composite soil stabilizer[D]. Zhejiang: Zhejiang Sci-Tech University, 2023.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-24
  • 最后修改日期:2024-08-22
  • 录用日期:2024-10-16
文章二维码