高性能混凝土强度-组分相关性分析的可解释机器学习模型
DOI:
CSTR:
作者:
作者单位:

1.长安大学;2.长安大学地质工程与测绘学院;3.长安大学理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省博士后科研项目(2023BSHEDZZ211);咸阳市科技创新团队项目(L2023CXNLCXTD005)


Explainable machine learning model for strength component correlation analysis of high-performance concrete
Author:
Affiliation:

1.Chang’an University;2.School of Geological Engineering and Geomatics, Chang’an University;3.School of Sciences, Chang’an University

Fund Project:

Shaanxi Postdoctoral Science Foundation Project (2023BSHEDZZ211.); Xianyang City science and technology innovation team project(L2023CXNLCXTD005)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高性能混凝土强度与其组分之间存在复杂相关性,传统的黑盒模型因缺乏可解释性无法揭示二者之间的实际依存关系。本文基于高性能混凝土大样本数据集,构建机器学习模型,采用Hyperopt算法对机器学习模型进行优化,并与SHAP可解释技术和特征依赖值算法集成,计算得到高性能混凝土强度与其各组分非线性关系的可视化表征,以及多组分之间的交互耦合作用。研究表明:Hyperopt-极端梯度提升模型为可信任的机器学习模型,具有较高准确性与稳健性;高性能混凝土的八种组分(因素)中,龄期、水泥、水和矿渣对抗压强度起关键控制作用,其与抗压强度的关系式分别满足指数函数、幂函数、高斯函数和指数函数,同时,四种关键因素之间还存在明显的交互耦合效应。研究结果可为高性能混凝土复合设计和关键因素控制提供理论参考。

    Abstract:

    The strength of high-performance concrete demonstrates a intricate relationship with its components. Traditional black box models lack interpretability. As a result, they fail to reveal the actual dependency between concrete strength and its components. Using a large sample dataset of high-performance concrete, Machine Learning Models are constructed and optimized with the Hyperopt algorithm. The models are integrated with SHAP explanation and feature dependency algorithms. A visual representation of the nonlinear relationship between the strength of high-strength concrete and its components is calculated. Additionally, the interaction and coupling effects between multiple components are examined. The results indicate: Hyperopt-Extreme Gradient Boosting Model is a Trusted Machine Learning Model with high accuracy and robustness. Among the eight components(factors), age, cement, water and slag play a key controlling role in compressive strength, and their relationship with compressive strength satisfies exponential function, power function, Gaussian function, and exponential function. At the same time, there is a significant interactive coupling effect between the four key factors. The research results can provide theoretical reference for the composite design of high-strength concrete and key factor control.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-10
  • 最后修改日期:2024-09-11
  • 录用日期:2024-10-16
  • 在线发布日期:
  • 出版日期:
文章二维码