多尺度视角下桥梁损伤检测与服役性能评估综述
DOI:
CSTR:
作者:
作者单位:

1.西南交通大学土木工程学院;2.西南交通大学桥梁智能与绿色建造全国重点实验室;3.四川交大工程检测咨询有限公司;4.中北大学经济与管理学院

作者简介:

通讯作者:

中图分类号:

U446.3

基金项目:

国家自然科学基金项目(52322811),四川省科技计划资助项目(2020YJ0081),四川交大工程检测咨询有限公司科研项目(KYL202305-0143)


Multi-scale Perspective Bridge Damage Detection and ServicePerformance Evaluation Research: A Review
Author:
Affiliation:

1.School of Civil Engineering;2.National Key Laboratory of Bridge Intelligent and Green Construction,Southwest Jiaotong University;3.School of Civil Engineering, Southwest Jiaotong University;4.Sichuan Jiaoda Engineering Testing Consulting Co,Ltd;5.College of Economic and Management,North University of China

Fund Project:

National Natural Science Foundation of China (No. 52322811), Sichuan Science and Technology Program (No. 2020YJ0081), Scientific Program of Sichuan Jiaoda Engineering Testing Consulting Co., Ltd (KYL202305-0143)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    桥梁检测与服役性能评估是保障桥梁安全运营的核心技术。以多尺度为核心,对桥梁损伤检测与评估领域的学术进展、现有成果及未来趋势进行了系统梳理,并从宏观、中观及亚微观的多尺度视角展开探讨。宏观尺度上,深入剖析了桥梁特征检测方法的演变,揭示了其向基于车辆响应的快速检测技术转型的趋势。在中观及亚微观尺度上,鉴于桥梁表观损伤的复杂性,现有研究重点聚焦于基于计算机视觉的识别方法。在服役性能评估方面,归纳了现有的桥梁短期状态评估与长期状态预测方法。综合分析表明,当前桥梁检测技术在识别桥梁损伤特征上已具成效,但未来仍需聚焦于基于车辆响应的宏观损伤识别与基于计算机视觉的中观及亚微观损伤识别,这两大方向均展现出巨大的应用潜力。未来研究应进一步优化车桥耦合响应模型,提升其在不同宏观尺度损伤形式下的适用性;深入研究中观及亚微观损伤图像与桥梁力学特征的映射关系;加强多尺度损伤相关性的研究,以提高检测准确性;从工程实际出发,探索更具实用性的桥梁服役性能评估方法。

    Abstract:

    Bridge inspection and service performance evaluation are critical technologies for ensuring the safe operation of bridges. This paper systematically reviews the academic progress, existing achievements, and future trends in the field of bridge damage detection and assessment, focusing on the multi-scale perspective. The research is explored from three different scales: macro, meso, and sub-micro. At the macro scale, the evolution of bridge feature detection methods is deeply analyzed, revealing the trend of transforming into rapid detection technologies based on vehicle response. At the meso and sub-micro scales, due to the complexity of bridge surface damage, existing research focuses on recognition methods based on computer vision. In terms of service performance evaluation, the existing methods for short-term bridge condition assessment and long-term condition prediction are summarized. The comprehensive analysis shows that the current bridge inspection technology has been effective in identifying bridge damage features. However, future research should still focus on two directions: macro damage identification based on vehicle response and meso and sub-micro damage identification based on computer vision. Both directions have shown great application potential. Future research should further optimize the vehicle-bridge coupling response model and improve its applicability to different forms of macro-scale damage. Studying the mapping relationship between meso and sub-micro-scale damage images and bridge mechanical characteristics. Improving the accuracy of detection with researching on the correlation of multi-scale damage. Especially, more practical bridge service performance evaluation methods are explored with engineering practice.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-12
  • 最后修改日期:2024-08-08
  • 录用日期:2024-09-11
  • 在线发布日期:
  • 出版日期:
文章二维码