基于物理信息神经网络的斜拉索索力识别
作者单位:

1.西南交通大学;2.河南省轨道交通研究院有限公司

基金项目:

国家自然科学基金(51978577)


Identification of cable tension based on physics-informed neural network
Author:
Affiliation:

1.Southwest Jiaotong University;2.Henan Rail Transit Research Institute Co. , Ltd.

Fund Project:

National Natural Science Foundation of China (No. 51978577)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    准确识别索力具有重要现实意义,但频率法在实际应用中存在计算公式复杂多样的问题。基于此,本文将物理信息神经网络(Physics-informed Neural Network, PINN)引入索力识别领域,提出了基于物理信息神经网络的斜拉索索力识别方法。该方法在神经网络损失函数中引入表征斜拉索索力的弦振动方程损失项,并利用斜拉索的动位移响应进行网络训练,通过最小化损失函数即可实现索力识别。基于数值仿真算例和室内试验模型的有限测试数据,利用本文所提方法实现了索力的准确识别。研究结果表明,在本文所设定的所有斜拉索索力识别问题中,本文方法的索力识别误差均不超过3%。这一结果证明了该方法具有较高的识别精度、较强的可靠性以及良好的可扩展性,适用于实际工程中斜拉索索力的识别。

    Abstract:

    Accurate identification of cable tension has important practical significance, but the vibration-based tension estimation methods has the problem of complex and diverse calculation formulas in application. Based on this, this paper introduces the physics-informed neural network (PINN) into the field of cable tension identification, and proposes a method of cable tension identification based on physics-informed neural network. In this method, the loss term of string vibration equation representing the cable tension is introduced into the loss function of neural network, and the network is trained by using the dynamic displacement response of the cable. The cable tension can be identified by minimizing the loss function. Based on the finite test data of numerical simulation examples and indoor test model, the proposed method is used to realize the accurate identification of cable tension. The results show that the identification error of the proposed method is less than 3% in all the cable tension identification problems set in this paper. This result proves that this method has high identification accuracy, strong reliability and good scalability, and is suitable for the identification of cable tension in practical engineering.

    参考文献
    [1] 苑仁安, 秦顺全, 肖海珠. 一种斜拉桥目标状态索力快速精准确定的方法[J]. 桥梁建设, 2020, 50(2): 25-30.YUAN R A, QIN S Q, XIAO H Z. A method to rapidly and accurately determine target cable forces for cable-stayed bridge [J]. Bridge Construction, 2020, 50(2): 25-30. (in Chinese)
    [2] 唐盛华, 方志, 杨索. 考虑边界条件的频率法测索力实用公式[J]. 湖南大学学报(自然科学版), 2012, 39(08): 7-13.TANG S H, FANG Z, YANG S. Practical formula for the estimation of cable tension in frequency method considering the effects of boundary conditions [J]. Journal of Hunan University(Natural Sciences), 2012, 39(08): 7-13. (in Chinese)
    [3] 单德山, 董俊, 刘昕玥, 等. 具有减震器的吊杆施工期索力识别[J]. 中国公路学报, 2015, 28(8): 31-39.SHAN D S, DONG J, LIU X Y, et al. Tension identification of suspender with damper under construction [J]. China Journal of Highway and Transport, 2015, 28(8): 31-39. (in Chinese)
    [4] 刘文峰, 应怀樵, 柳春图. 考虑刚度及边界条件的索力精确求解[J]. 振动与冲击, 2003, (04): 14-16+27+108.LIU W F, YING H Q, LIU C T. Accurate solution of cable force considering stiffness and boundary conditions [J]. Journal of Vibration and Shock, 2003, (04): 14-16+27+108. (in Chinese)
    [5] ZUI H, SHINKE T, NAMITA Y. Practical formulas for estimation of cable tension by vibration method [J]. Journal of Structural Engineering, 1996, 122(6): 651-656.
    [6] 宋一凡, 贺拴海, 吴小平. 固端刚性拉索索力分析能量法[J]. 西安公路交通大学学报, 2001, 21(1): 55-57.SONG Y F, HE S H, WU X P. Energy method of the tension for fixed-end rigid cables [J]. Journal of Xi’an Highway University, 2001, 21(1): 55-57. (in Chinese)
    [7] ROMAN G, GUIDO D R, JOHANNES P. Cable force determination for the Danube channel bridge in Vienna [J]. Structural Engineering International, 2005, 15(3): 181-185.
    [8] 孙永明, 孙航, 任远. 频率法计算匀质竖直拉索索力的实用公式[J]. 工程力学, 2013, 30(4): 211-218.SUN Y M, SUN H, REN Y. Practical formulas to calculate tensions of vertical cable with uniform properties by frequency method [J]. Engineering Mechanics, 2013, 30(4): 211-218. (in Chinese)
    [9] 查文舒, 李道伦, 沈路航, 等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(03): 543-556.ZHA W, LI D, SHEN L, ZHANG W, et al. Review of neural network-based methods for solving partial differential equations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556. (in Chinese)
    [10] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J]. Journal of Computational Physics, 2018, 378:686-707.
    [11] 郑素佩, 靳放, 封建湖, 等. 双曲型方程激波捕捉的物理信息神经网络(PINN)算法[J]. 浙江大学学报(理学版), 2023, 50(01): 56-62+82.ZHENG S P, JIN F, FENG J H, et al. PINN-type algorithm for shock capturing of hyperbolic equations [J]. Journal of Zhejiang University(Science Edition), 2023, 50(1): 56-62+82. (in Chinese)
    [12] 余波, 许梦强, 高强. 基于物理信息神经网络的功能梯度材料稳态/瞬态热传导分析[J]. 计算力学学报, 2023, 40(4): 594-601.YU B, XU M Q, GAO Q. Physics-informed neural networks for solving steady/transient heat conduction problems of functionally graded materials [J]. Chinese Journal of Computational Mechanics, 2023, 40(4): 594-601. (in Chinses)
    [13] LATRACH A, MALKI M L, MORALES M, et al. A critical review of physics-informed machine learning applications in subsurface energy systems[J]. Geoenergy Science and Engineering, 2024: 212938.
    [14] LI H, ZHANG Z, LI T, et al. A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities[J]. Mechanical Systems and Signal Processing, 2024, 209: 111120.
    [15] SALVATORE C, D C, VINCENZO SCHIANO D C, FABIO G, et al. Scientific machine learning through physics-informed neural networks: where we are and what's next [J]. Journal of Scientific Computing, 2022, 92(3): 1-62.
    [16] 肖亮. 基于人工神经网络的索力识别[D]. 黑龙江: 哈尔滨工业大学, 2019.XIAO L. Identification of cable force based on artificial neural network [D]. Heilongjiang: Harbin Institute of Technology, 2019. (in Chinese)
    [17] WU C, ZHU M, TAN Q, et al. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks [J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115671.
    [18] McClenny L D, Braga-Neto U M. Self-adaptive physics-informed neural networks[J]. Journal of Computational Physics, 2023, 474: 111722.
    [19] 杨洋. 基于有限元方法的斜拉索线形参数计算[J]. 城市道桥与防洪, 2024, (05): 256-259+27.YANG Y. Calculation of linear parameters of stay cable based on finite element method[J]. Urban Roads Bridges & Flood Control, 2024, (05): 256-259+27. (in Chinese)
    [20] 杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13-22.YANG H Y, ZHAO X Y, WANG L. Review of data normalization methods [J]. Computer Engineering and Applications, 2023, 59(3): 13-22. (in Chinese)
    [21] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5): 359-366.
    [22] Xu Z Q J, Zhang Y, Luo T. Overview frequency principle/spectral bias in deep learning[J]. arXiv preprint arXiv:2201.07395, 2022.
    [23] 韩怡天, 冯东明, 吴刚. 基于机器视觉与无人机的结构动位移测量方法[J]. 振动与冲击, 2022, 41(19): 1-7.HAN Y T, FENG D M, WU G. Measurement method of structural dynamic displacement based on machine vision and UAV [J]. Journal of Vibration and Shock, 2022, 41(19): 1-7. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:86
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-23
  • 最后修改日期:2024-09-17
  • 录用日期:2024-11-22
文章二维码