循环加卸载与干湿循环后不同损伤度软硬互层岩体力学特性试验研究
作者:
作者单位:

1.中国科学院、水利部成都山地灾害与环境研究所;2.信阳师范大学

中图分类号:

TU452

基金项目:

国家自然科学基金项目(U22A20603);国家重点研发计划项目(2023YFC3008300)


Study on the mechanical properties of soft-hard interlayered rock mass with different damage degrees under cyclic loading-unloading and drying-wetting cycles
Author:
Affiliation:

1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences;2.Xinyang Normal University,Xinyang

Fund Project:

National Natural Science Foundation of China (No.U22A20603); National Key Research and Development Program of China (No.2023YFC3008300)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    探究具有不同初始损伤的软硬互层岩体的力学性质,对于评估震后损伤岩体在周期性干湿循环交替环境下的稳定性极为关键。本研究以变质砂岩和千枚岩互层岩体为研究对象,采用MTS岩石仪、声发射系统和数字图像相关技术,通过循环加卸载试验和随后的干湿循环试验,制备了具有不同初始损伤度的试样,然后开展单轴压缩试验,研究了不同初始损伤试样的变形破坏特征、裂纹演化过程、强度劣化规律,探究了试样破坏的前兆特征,并从微观角度揭示了试样的损伤劣化机制。结果表明:(1)软硬互层岩体表面的变形并不同步,千枚岩岩层的变形大于变质砂岩层,并最先出现局部高应变区,变形差异系数能够量化试样表面不同区域的变形差异,当变形差异系数由减小阶段转换为增大阶段时,表明局部裂纹发生了贯通。(2)穿晶裂纹和晶间裂纹的扩展贯穿整个加载过程,其破裂形式主要以张拉破裂为主。在塑性阶段,剪切破裂特征会变得明显,并引起RA/AF值变异系数CV的增大,当CV增加至6.5时,试样临近破坏。(3)试样的剪切破坏模式主要受岩体结构特征的控制,初始损伤则影响试样的破裂类型和裂纹的发育特征,初始损伤度越大,微裂纹数量越多,剪切破裂特征愈发显著。(4)初始损伤引起弹性模量,抗压强度和破坏位移的下降。微裂纹的增多、颗粒间胶结作用的减弱是导致岩体宏观力学性能劣化的根本原因。

    Abstract:

    Exploring the mechanical properties of soft-hard interbedded rock mass with different initial damage is crucial for assessing the stability of post-seismic damaged rock masses under cyclic drying and wetting conditions. This study focuses on the interbedded rock mass of metasandstone and phyllite, using an MTS rock testing machine, an acoustic emission system, and digital image correlation technology. Through cyclic loading and unloading tests followed by cyclic drying and wetting tests, the samples with different initial damage degrees were prepared. Subsequently, uniaxial compression tests were conducted to investigate the deformation and failure characteristics, crack evolution process, and strength degradation laws of samples with different initial damage degrees, explore the precursor information of sample failure, and reveal the damage degradation mechanism from a micro perspective. The results indicate: (1) Deformation on the surface of the soft-hard interbedded rock mass is not concurrent; the deformation of the phyllite layers exceeds that of the metasandstone layers, and the first signs of local high strain zones emerge. The deformation difference coefficient can quantify the discrepancies in deformation across different areas of the sample surface. A shift from a decreasing to an increasing deformation difference coefficient indicates that local cracks have coalesced. (2) The propagation of transcrystalline crack and intercrystalline crack extends throughout the loading process, with tensile fracturing being the primary mode of failure. During the plastic stage, shear fracturing characteristics become more evident, leading to an increase in the coefficient of variation (CV) of the RA/AF values. When the CV reaches 6.5, the sample is approaching failure. (3) The shear failure mode of the sample is primarily governed by the structural features of the rock mass, while initial damage influences the type of failure and the development of cracks. Higher initial damage degrees result in more microcracks and more pronounced shear fracturing characteristics. (4) Initial damage leads to a decrease in elastic modulus, compressive strength, and failure displacement. The increase in microcracks and the weakening of interparticle bonding are the fundamental causes of the deterioration of the rock mass's macroscopic mechanical properties.

    参考文献
    [1] 刘星洪, 姚鑫, 杨波, 等. 川西高原活动性滑坡识别与空间分布特征研究[J]. 地质力学学报, 2023, 29(01): 111-126.LIU X H,YAO X,YANG B, et al. InSAR-based indentification and spatial distribution analysis of active landslides in the Western Sichuan Plateau [J]. Journal of Geomechanics, 2023, 29(01): 111-126. (in Chinese)
    [2] KILBURN C R, PETLEY D N. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy[J]. Geomorphology, 2003, 54(1-2): 21-32.
    [3] PENG K, ZHANG Y, WANG YM, Luo S, et al. Static compression behavior and strength weakening mechanism of dynamically damaged granite after water soaking [J]. Engineering Failure Analysis, 2024, 156: 107760.
    [4] 邓华锋, 方景成, 李建林, 等. 水-岩和循环加卸载次序作用下砂岩动力特性损伤演化规律[J]. 岩土力学, 2021, 42(02): 343-351.DENG H F, FANG J C, LI J L, et al. Damage evolution of dynamic characteristics of sandstone under the sequential action of water-rock interaction and cyclic loading and unloading [J]. Rock and Soil Mechanics, 2021, 42(02): 343-351. (in Chinese)
    [5] TANG J H, CHEN X D, DAI F. Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading [J]. Engineering Fracture Mechanics, 2020, 226: 106890.
    [6] ZHU L, CUI S H, PEI X J, et al. Experimental investigation on the seismically induced cumulative damage and progressive deformation of the 2017 Xinmo landslide in China [J]. Landslides, 2021, 18: 1485-1498.
    [7] 汤长西, 颜峰, 孔垂元, 等. 干湿循环下红砂岩颗粒崩解特性及微观机理研究[J]. 材料导报, 2023, 37(S2): 278-282.TANG C X, YAN F, KONG C Y, et al. Disintegration characteristics and micro-mechanism of red sandstone particles under dry and wet cycles [J]. Materials Reports, 2023, 37(S2): 278-282. (in Chinese)
    [8] 赵二平, 蒋尚家, 章涵, 等. 卸荷与干湿循环联合效应下巴东组泥质粉砂岩膨胀特性研究[J/OL]. 三峡大学学报(自然科学版), 1-7[2024-07-15].ZHAO E P, JIANG S J, ZHANG H, et al. Expansion characteristics of clayey siltstone of the badong formation under the combined effects of unloading and dry-wet cycling [J/OL]. Journal of China Three Gorges University (Natural Sciences), 1-7[2024-07-15]. (in Chinese)
    [9] 王连华. 水-温循环作用下千枚岩的动态拉伸特性[J]. 土木与环境工程学报(中英文), 2024, 46(04): 109-119.WANG L. Dynamic tensile characteristics of phyllite under water-temperature cycle conditions [J]. Journal of Civil and Environmental Engineering, 2024, 46(04): 109-119. (in Chinese)
    [10] DOAN M L, D’HOUR V. Effect of initial damage on rock pulverization along faults [J]. Journal of Structural Geology, 2012, 45: 113-124.
    [11] CHEN Y L,WU H S, PU H, et al. Investigations of Damage Characteristics in Rock Material Subjected to the Joint Effect of Cyclic Loading and Impact [J]. Energies, 2020, 13: 2154.
    [12] 王天佐, 王春力, 薛飞, 等. 不同循环加卸载路径下红砂岩声发射与应变场演化规律研究[J]. 岩石力学与工程学报, 2022, 41(S1): 2881-2891.WANG T Z, WANG C L, XUE F, et al. Study on acoustic emission and strain field evolution of red sandstone under different loading and unloading paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2881-2891. (in Chinese)
    [13] 王瑞红, 危灿, 刘杰, 等. 循环加卸载下节理砂岩宏细观损伤破坏机制研究[J]. 岩石力学与工程学报, 2023, 42(04): 810-820.WANG R H, WEI C, LIU J, et al. Macro and micro characteristics of jointed sandstone under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(04): 810-820. (in Chinese)
    [14] 王桂林, 杨证钦, 张亮, 等. 干湿循环节理砂岩单轴压缩声发射演化特征[J]. 长江科学院院报, 2023, 40(02): 81-86+94.WANG G L, YANG Z Q, ZHANG L, et al. Acoustic emission evolution characteristics of jointed sandstone at drying-wetting damage under uniaxial compression [J]. Journal of Changjiang River Scientific Research, 2023, 40(02): 81-86+94. (in Chinese)
    [15] WU Q, LIU Y X, TANG H M, et al. Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the Three Gorges Reservoir area [J]. Engineering Geology, 2023, 314: 107013.
    [16] 朱建波, 付乙梓, 李瑞, 等. 干湿循环与动态压缩耦合作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2023, 42(S1): 3558-3566.ZHU J B, FU Y Z, LI R, et al. Experimental study on mechanical characteristics of sandstone under drying-wetting cycles and dynamic compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3558-3566. (in Chinese)
    [17] HAVAEJ M, WOLTER A, STEAD D. The possible role of brittle rock fracture in the 1963 Vajont Slide, Italy [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 319-330.
    [18] 范朝涛, 李英明, 董春亮, 等. 真三轴中间主应力循环加卸作用下砂岩损伤与声发射特征研究[J/OL]. 煤炭学报, 1-12[2024-06-16].FAN C T, LI Y M, DONG C L, et al. Sandstone damage and acoustic emission characteristics under the cyclic loading and unloading of the intermediate principal stress of the true three-axis [J/OL]. Journal of China Coal Society, 1-12[2024-06-16]. (in Chinese)
    [19] TRIPPETTA F, COLLETTINI C, MEREDITH P G, et al. Evolution of the elastic moduli of seismogenic Triassic Evaporites subjected to cyclic stressing [J]. Tectonophysics, 2013, 592: 67-79.
    [20] YANG D J, HU J H, WEN G P, et al. Analysis of fracture deformation field and energy evolution of granite after high confining pressure cyclic load pre-damage [J]. Royal Society Open Science, 2021, 8(6): 201966.
    [21] HUANG Z, ZHANG W, ZHANG H, et al. Damage characteristics and new constitutive model of sandstone under wet-dry cycles [J]. Journal of Mountain Science, 2022, 19(7): 2111-2125.
    [22] 郑蕾, 许晓静, 许王亮, 等. 预制孔洞凝灰岩破坏声发射响应特性及预警[J/OL]. 土木与环境工程学报(中英文), 1-11[2024-07-15].ZHENG L, XU X J, XU W L, et al. Acoustic emission response characteristics and early warning of prefabricated hole tuff failure [J]. Journal of Civil and Environmental Engineering, 1-11[2024-07-15]. (in Chinese)
    [23] BI J, ZHAO Y, WU Z J, et al. Research on crack classification method and failure precursor index based on RA-AF value of brittle rock [J]. Theoretical and Applied Fracture Mechanics, 2024, 129: 104179.
    [24] 陈国庆, 唐鹏, 李光明, 等. 岩桥直剪试验声发射频谱特征及主破裂前兆分析[J]. 岩土力学, 2019, 40(05): 1649-1656+1662.CHEN G Q, TANG P, LI G M, et al. Analysis of acoustic emission frequency spectrum characteristics and main fracture precursor of rock bridge in direct shear test [J]. Rock and Soil Mechanics, 2019, 40(05): 1649-1656+1662. (in Chinese)
    [25] DU K, LUO X Y, LIU M H, et al. Understanding the evolution mechanism and classification criteria of tensile-shear cracks in rock failure process from acoustic emission (AE) characteristics [J]. Engineering Fracture Mechanics, 2024, 296:109864.
    [26] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(07): 2324-2332.GAN Y X, WU S C, REN Y, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Rock and Soil Mechanics, 2020, 41(07):2324-2332. (in Chinese)
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:131
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-25
  • 最后修改日期:2024-09-30
  • 录用日期:2024-10-16
文章二维码