磷石膏协同聚丙烯纤维改良黄土强度特性及微观机理研究
作者:
作者单位:

西北农林科技大学 水利与建筑工程学院

中图分类号:

TU375.4

基金项目:

国家自然科学基金项目青年项目,中国博士后科学基金,陕西省自然科学基础研究计划资助项目


Investigation of the Strength Characteristics and Microscopic Mechanisms of Loess Improvement with Phosphogypsum and Polypropylene Fibers
Author:
Affiliation:

College of Hydraulic and Architectural Engineering,Northwest A F University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    工业固废磷石膏可以很好的提升土体强度,但会增加土体脆性,而纤维加筋技术可以改良土体塑性,两种材料协同可起到互补作用。以陕西杨凌黄土为研究对象,通过无侧限抗压强度试验探究磷石膏改良黄土的最优掺量;基于该掺量开展直剪试验探究纤维加固黄土的最优掺量;最后通过扫描电镜试验(SEM)探究磷石膏协同聚丙烯纤维改良黄土的微观机理。研究结果表明:当磷石膏单掺黄土进行改良加固时,随磷石膏质量占比增大,改良后黄土的无侧限抗压强度先增大后减小,磷石膏掺入黄土的最优掺量为12%。基于磷石膏改良黄土的最优掺量,掺入聚丙烯纤维,发现随着聚丙烯纤维掺比增大,试样的峰值强度、粘聚力和残余强度先增大后减小,内摩擦角持续增大;微观试验表明磷石膏改良黄土和聚丙烯纤维协同磷石膏改良黄土均可以增大土粒间的胶结作用,填充土粒间孔隙;聚丙烯纤维在黄土中会形成纤维团将土颗粒包裹,从而为土粒提供拉应力,提升土样塑性。

    Abstract:

    Phosphogypsum, as one of the industrial solid wastes, can enhance the soil strength but will increase soil brittleness. While the fiber reinforcement technology can improve the soil plasticity. The synergy of the two materials, i.e., phosphogypsum and fiber, can play a complementary role in improving the mechanical properties of soils. The loess from Yangling, Shaanxi Province, is used to explore the optimal mix ratio of phosphogypsum in the loess by unconfined compressive strength tests. And then, the optimal mix ratio of fiber in the mixture of phosphogypsum and loess was investigated by the direct shear test based on the mixture ratio above. Finally, the microscopic mechanisms of loess improvement with phosphogypsum and polypropylene fibers was examined through scanning electron microscopy (SEM). The results showed that the unconfined compressive strength of the loess increases first and then decreases with an increase in the phosphogypsum mass when the phosphogypsum is mixed with the loess for reinforcement. And the optimal mix mass ratio of phosphogypsum in the loess is 12% in this study. The polypropylene fibers were then mixed into the mixture of phosphogypsum and loess based on the optimal mix mass ratio of phosphogypsum in the loess. It can be found that the peak strength, cohesion, and residual strength of the mixture sample increase first and then decrease, while the internal friction angle increase, with an increase in the polypropylene fiber content. The microscopic test results also indicated that the phosphogypsum and polypropylene fibers significantly enhance the cementation and fill the void among soil particles. Polypropylene fibers in loess can forms fiber clumps to wrap the soil particles. Thereby, it can provide tensile stress and improve the plasticity for the soil sample.

    参考文献
    [1] 田威, 李腾, 贾能, 等. 木钙源EICP溶液固化路基黄土性能研究[J]. 材料导报, 2022, 36(15): 78-85.TIAN W, LI T, JIA N, et al. Properties of Subgrade Loess Solidified by Calcium Lignosulfonate-EICP Solution [J]. Material Reports, 2022, 36(15): 78-85.
    [2] MENG Z, LI Y C, SHAN Y W, et al. Experimental Study of the Microstructure of Loess on Its Macroscopic Geotechnical Properties of the Baozhong Railway Subgrade in Ningxia, China [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4829-4840.
    [3] JUN L, DAN T, YI X Z, et al. Carbon and Air Pollutant Emissions from China's Cement Industry 1990-2015: Trends, volution of technologies, and drivers [J]. Atmospheric Chemistry and Physics, 2021, 21(3): 1627-1647.
    [4] 薛志佳, 李良辰, 晏长根, 等. 公路工程湿软黄土路基施工能耗和碳排放评估[J]. 大连理工大学学报, 2021, 61(5): 522-530.XUE Z J, LI L C, YAN C G, et al. Evaluation of Energy Consumption and Carbon Emission for Construction of Wet and Soft Loess in Highway Engineering [J]. Journal of Dalian University of Technology, 2021, 61(5): 522-530.
    [5] 薛志佳, 罗江, 晏长根, 等. 矿渣-白泥固化黄土的力学性能与微观机理[J]. 中国公路学报, 2024: 1-17.XUE Z J, LUO J, YAN C G, et al. Mechanical Properties and Microscopic Mechanism of Slag-White Mud Solidified Loess [J]. China Journal of Highway and Transportation, 2024: 1-17.
    [6] XUE Z, ZHANG Y, LUO J, et al. Analysis of Compressive Strength, Durability Properties, and Micromechanisms of Solidified Loess Using Industrial Solid Waste: Slag–white Mud-walcium Carbide Residue [J]. Journal of Building Engineering, 2024, 84: 108511.
    [7] DONG E, FU S, WU C, et al. Value-added Utilization of Phosphogypsum Industrial By-products in Producing Green Ultra-high Performance Concrete: Detailed Reaction Kinetics and Microstructure Evolution Mechanism [J]. Construction and Building Materials, 2023, 389: 131726.
    [8] MURALI G, AZAB M. Recent Research in Utilization of Phosphogypsum as Building Materials: Review [J]. Journal of Materials Research and Technology, 2023, 25: 960-987,
    [9] YANG J, ZENG J, HE X, et al. Sustainable Clinker-free Solid Waste Binder Produced from Wet-ground Granulated Blast-furnace Slag, Phosphogypsum and Carbide Slag [J]. Construction and Building Materials, 2022, 330: 127218.
    [10] 熊雨, 邓华锋, 彭萌, 等. 四种人工合成纤维加筋黄土的抗剪特性[J]. 长江科学院院报, 2022, 39(1): 122-126+133.XIONG Y, DENG H F, PENG M, et al. Shear Properties of Loess reinforced by Four Synthetic Fibers Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 122-126+133
    [11] 赵之, 杨秀娟, 石庆红, 等. 磷石膏/木质素固化铅污染土的无侧限抗压强度[J]. 土木与环境工程学报(中英文), 2022: 1-12.ZHAO Z, YANG X J, SHI Q H, et al. Unconfined Compressive Strength of Phosphogypsum/Lignin Solidified Lead Contaminated Soil [J]. Journal of Civil and Environmental Engineering, 2022: 1-12.
    [12] 王应富, 张树光, 黄啸, 等. 磷石膏-钢渣-矿渣固化低液限粉质黏土力学性能及耐久性能研究[J]. 土木工程学报, 2023, 56(S1): 12-23.WANG Y F, ZHANG S G, HUANG X, et al. Mechanical Property and Durability of Low Liquid Limit Silty Clay Solidified by Phosphogypsum-Steel Slag-ground Granulated Blast-furnace Slag [J]. Civil Engineering Journal, 2023, 56(S1): 12-23.
    [13] REN Z S, WANG L, WANG H, et al. Solidification/Stabilization of Lead-Contaminated Soils by Phosphogypsum Slag-based Cementitious Materials [J]. Sci Total Environ, 2023, 857: 159552.
    [14] WU Z, XU J, FAN H, et al. Experimental Study on Dry-wet Durability and Water Stability Properties of Fiber-reinforced and Geopolymer-stabilized Loess [J]. Construction and Building Materials, 2024, 418: 135379.
    [15] WANG H, NI W, YUAN K. Mechanical Properties, Microstructural Evolution, and Environmental Impacts of Recycled Polypropylene Fiber Stabilized Loess [J]. Construction and Building Materials, 2023, 400: 132850.
    [16] KHODABANDEH M A, NAGY G, TÖRÖK Á. Stabilization of Collapsible Soils with Nanomaterials, Fibers, Polymers, Industrial Waste, and Microbes: Current Trends [J]. Construction and Building Materials, 2023, 368: 130463.
    [17] 杨雄杰, 寇轩, 常超, 等. 石灰粉煤灰稳定再生料基层级配设计与力学性能研究[J]. 市政技术, 2024, 42(5): 40-46.YANG X J, KOU X, CHANG Cet al. Study on Base Gradation Design and Mechanical Properties of Lime-Fly Ash Stabilized Recycled Materials [J]. Journal of Municipal Technology, 2024, 42(5): 40-46
    [18] 王瑞彩, 吴腾. 改良垃圾焚烧底渣固化疏浚淤泥的试验研究[J]. 河海大学学报(自然科学版), 2024: 1-11.WANG R C, WU T. Experimental Study of Solidification of Dredged Sludge with Improved Municipal Solid Waste Incineration Bottom Ash [J]. Journal of Hohai University(Natural Science Edition), 2024: 1-11.
    [19] FENG M, WANG J, LIU S, et al. Coupling Effect of Curing Temperature and Relative Humidity on the Unconfined Compressive Strength of Xanthan Gum-Treated Sand [J]. Construction and Building Materials, 2024, 448.
    [20] 徐洪钟, 王沐婉, 沐红元, 等. 微生物诱导碳酸钙沉积加固剧烈砂化白云岩实验研究[J]. 清华大学学报 (自然科学版), 2024, 64(7): 1168-1178XU H Z, WANG M W, MU H Y, et al. Experiment Study on Reinforcement of Heavily Sandy Dolomite by Microbially Induced Carbonate Precipitation [J] J Tsinghua Univ (Sci & Technol), 2024, 64(7): 1168-1178
    [21] 安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学, 2021, 42(2): 501-510AN N, YAN C G, WANG Y C, et al. Experimental Study on Anti-erosion of Performance of Polypropylene Fiber-reinforced Loess [J]. Rock and Soil Mechanics, 2021, 42(2): 501-510
    [22] 贾卓龙, 梁哲瑞, 晏长根, 等. 聚丙烯纤维加筋黄土抗渗性能试验研究[J]. 工程地质学报, 2023: 1-11.JIA Z L, LIANG Z R, YAN C G, et al. Experimental Study on Impermeability of Polypropylene Fiber Reinforced Loess [J]. Journal of Engineering Geology, 2023: 1-11.
    [23] 贾卓龙, 晏长根, 包含, 等. 生物胶-纤维固化黄土的三轴剪切特性研究[J]. 中国公路学报, 2024: 1-16.JIA Z L, YAN C G, BAO H, et al. Study on Triaxial Shear Characteristics of Biological Gum-fiber Reinforced Loess[J]. China Journal of Highway and Transportation, 2024: 1-16.
    [24] 卢浩, 晏长根, 贾卓龙, 等. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82-92.LU H, YAN C G, JIA Z L, et al. Shear Strength and Disintegration Properties of Polypropylene Fiber-reinforced Loess [J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82-92.
    [25] ROSHAN K, CHOOBBASTI A J, KUTANAEI S S, et al. The Effect of Adding Polypropylene Fibers on the Freeze-thaw Cycle Durability of Lignosulfonate Stabilised Clayey Sand [J]. Cold Regions Science and Technology, 2022, 193: 103418.
    [26] 李云鹏, 林一芃, 张晶旭. 基于反复直剪试验的强膨胀土强度特性研究[J]. 河北地质大学学报, 2024, 47(1): 86-91.LI Y P, LIN Y P, ZHANG J X. Study on Strength Characteristics of Strong Expansive Soil Based on Repeated Direct Shear Test [J]. Journal of Hebei University of Geosciences, 2024, 47(1): 86-91.
    [27] 刘新荣, 郭雪岩, 周小涵, 等. 库岸危岩剪切带—基岩界面宏细观剪切贯通机制及力学特性研究[J]. 岩石力学与工程学报, 2024, 43(5): 1096-1109.LIU X R, GUO X Y, ZHOU X H, et al. Study on Macro-meso Shear Transfixion Mechanisms and Mechanical Properties of Shear Band-bedrock Interfaces of Dangerous Rock on Reservoir Bank [J]. Journal of Rock Mechanics and Engineering. 2024, 43(5): 1096-1109.
    [28] 吕玺琳, 钟启锋, 颜建春, 等. 不同初始饱和度条件下高液限滑带土环剪试验[J]. 工程地质学报[J], 2024, 32(2): 370-377.LV X L, ZHONG Q F, YAN J C, et al. Ring Shear Test of High Liquid Limit Sliding Zone Soil Under Different Initial Saturation [J]. Journal of Engineering Geology, 2024, 32(2): 370-377.
    [29] 胡再强, 林山, 李宏儒, 等. 洛川Q_2黄土残余强度影响因素试验研究[J]. 岩土工程学报, 2017, 39(S1): 6-11.HU Z Q, LIN S, LI H R, et al. Factors Residual Strength of Luochuan Loess [J]. Journal of Geotechnical Engineering, 2017, 39(S1): 6-11.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:84
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-28
  • 最后修改日期:2024-11-25
  • 录用日期:2024-12-20
文章二维码