倾斜地层土工加筋路堤列车荷载动力响应特性模型试验研究
作者:
作者单位:

1.重庆大学 土木工程学院;2.山地城镇建设与新技术教育部重点实验室

基金项目:

国家自然科学基金(52108299 52178312 U2268213)


Study on dynamic response characteristics model test of geotechnical reinforced embankment under train loads in inclined stratum
Author:
Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在山区修建高速铁路时,由于山区地形地质条件复杂,往往容易引起山区铁路路堤的整体或局部破坏。随着土工加筋技术的发展,越来越多的山区铁路路堤采用土工合成材料加筋的方式来解决路堤的变形破坏问题,但倾斜地层条件下的土工加筋路堤的动力响应特性和变形规律尚不明确。由此,本文基于倾斜基岩加筋铁路路堤与无倾斜基岩加筋铁路路堤的模型对比试验,开展倾斜地层条件下土工加筋铁路路堤的动力响应特性研究,对土工加筋铁路路堤的竖向位移、加速度、动土压力以及土工格栅应变的变化规律进行对比分析,探究倾斜地层条件下的土工加筋铁路路堤的动力响应特性。结果表明:倾斜基岩路堤的竖向峰值位移要略大于无倾斜基岩路堤,且随着加载频率的增加,路堤的竖向峰值位移都有所减小。倾斜基岩路堤的竖向峰值加速度与竖向峰值动土压力明显大于无倾斜基岩路堤的工况,且两者的竖向峰值加速度与峰值动土压力都随加载频率的增大而增大,随埋深增加而减小。当埋深相同时,路堤加载中心下方的土体竖向峰值加速度与峰值动土压力最大,远离基岩侧次之,靠近基岩侧最小。路堤的格栅峰值微应变都随着格栅埋深的增加而减小,且靠近路堤顶部的两层格栅衰减幅度较小,而在相同加载频率下,倾斜基岩加筋路堤的格栅峰值微应变约为无倾斜基岩加筋路堤的两倍。

    Abstract:

    It is often easy to cause overall or local damage of railway embankment in mountainous areas due to the complex topographic and geological conditions when constructing high-speed railway. With the development of geotechnically reinforced technology, more and more mountain railway embankments adopt geosynthetics reinforcement to solve the deformation damage of embankments, however, the dynamic response characteristics and deformation law of geotechnical reinforcement under inclined stratum conditions are still ambiguity. Therefore, based on the model comparison test between railway embankment with inclined bedrock reinforcement and without inclined bedrock reinforcement, this paper carries out the research on the dynamic response characteristics of geotechnically reinforced railway embankment under inclined stratum conditions. And a comparative analysis on the changing rules of the vertical displacement, acceleration, dynamic soil pressure, and geogrid strains of geotechnically reinforced railway embankment was conducted. It aimed to investigate the dynamic response characteristics of geotechnically reinforced railway embankment under inclined stratum. The results showed that the vertical peak displacement of the inclined bedrock embankment is slightly larger than that of the uninclined bedrock embankment, and the vertical peak displacements of both cases decrease with the increase of loading frequency. The vertical peak acceleration and vertical peak dynamic soil pressure of the inclined bedrock embankment are obviously larger than those of the uninclined bedrock embankment, and both of them increase with the increase of loading frequency and decrease with the increase of burial depth. When the depth of burial is the same, the soil below the loading center of the embankment has the largest peak vertical acceleration and peak dynamic soil pressure, followed by the side away from the bedrock, and the side near the bedrock has the smallest. The peak micro-strain of the grids of the embankment all decreased with increasing depth of embedment of the grids, and the two layers of grids near the top of the embankment decayed less, whereas the peak micro-strain of the grids of the inclined bedrock-reinforced embankment was about twice as much as that of the uninclined bedrock-reinforced embankment at the same loading frequency.

    参考文献
    [1] SHARMA R, CHEN Q M, ABU-FARSAKH M, et al. Analytical modeling of geogrid reinforced soil foundation [J]. Geotextiles and Geomembranes, 2009, 27(1): 63-72.
    [2] Deb K, Basudhar P K, Chandra S. Axi-Symmetrie Analysis of Geosynthetic- ReinforcedGranular Fill Soft Soil System with Group of Stone Columns[J]. Geotechnical andGeological Engineering, 2010, 28(2): 177–186.
    [3] Zhang Ling, Ou, Qiang, Zhao Minghua. Deformation Behavior of Geocell Reinforced Granular Cushion Over Soft Soil with Stone Columns[C].2017:412-424.
    [4] MUKHERJEE S, SIVAKUMAR BABU G L. Three-dimensional numerical modeling of geogrid reinforced foundations [J]. Computers and Geotechnics, 2023, 158: 105397.
    [5] 张玲, 欧 强, 赵明华, 等. 移动荷载下土工加筋路堤动力响应特性数值分析 [J]. 岩土力学, 2021, 42(10): 2865-74.ZHANG Ling, QiangOU, ZHAO Minghua, et al. Numerical analysis of dynamic response characteristics of geotechnically reinforced embankment under moving loads [J]. Rock and Soil Mechanics, 2021, 42(10): 2865-74.
    [6] Wang Zhijie, Xia Qiushi, Yang Guangqing, et al. Effects of transverse members on geogrid pullout behavior considering rigid and flexible top boundaries[J]. GEOTEXTILES AND GEOMEMBRANES, 2023, 51, (4):72-84.
    [7] 芮瑞, 贺世开, 刘浩, 等. 基于混合试验的桩承式加筋路堤参数影响分析 [J]. 岩石力学与工程学报, 2022, 41(07): 1476-1487.RUI Rui, HE Shikai, LIU Hao, et al. Impact analysis of pile-bearing reinforced embankment parameters based on hybrid tests [J]. CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, 2022, 41(07): 1476-1487.
    [8] 肖宏, 蒋关鲁, 魏永幸. 遂渝线无砟轨道桩网结构路基现场动车试验测试分析[J].铁道学报,2010,32(01):79-84.XIAO Hong, JIANG Guanlu, WEI Yongxing. Analysis of on-site moving test test of ballasted track pile network structure roadbed on Sui-Yu line [J]. JOURNAL OF THE CHINA RAILWAY SOCIETY,2010,32(01):79-84.
    [9] LUO Zhaogang, DING Xuanming, QiangOU, et al. Bearing capacity and deformation behavior of rigid strip footings on coral sand slopes [J]. Ocean Engineering, 2023, 267: 113317.
    [10] 陈育民, 谢云飞, 薛珊珊, 等. 列车荷载作用下X形桩-网复合地基动力响应研究 [J]. 振动工程学报, 2022, 35(04): 857-865.CHEN Yumin, XIE Yunfei, XUE Shanshan, et al. Study on the dynamic response of X-shaped pile-network composite foundation under train loading [J]. JOURNAL OF VIBRATION ENGINEERING, 2022, 35(04): 857-865.
    [11] DING Xuanming, LUO Zhaogang, QiangOU. Mechanical property and deformation behavior of geogrid reinforced calcareous sand [J]. Geotextiles and Geomembranes, 2022, 50(4): 618-631.
    [12] 徐鹏, 蒋关鲁, 任世杰, 等. 简谐波作用下加筋土挡墙动土压力模型试验研究[J].岩石力学与工程学报,2018,37,(A2):4283-4289.XU Peng, JIANG Guanlu, REN Shijie, et al. Experimental study on dynamic soil pressure modelling of reinforced soil retaining walls under the action of simple harmonic waves [J]. CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, 2018,37,(A2):4283-4289.
    [13] 牛婷婷, 刘汉龙, 丁选明, 等. 高铁列车荷载作用下桩网复合地基振动特性模型试验[J]. 岩土力学, 2018, 39(03): 872-880.NIU Tingting, NIU Hanglong, DING Xuanming, et al. Model test on vibration characteristics of pile-network composite foundation under high-speed railway train loading [J]. Rock and Soil Mechanics,2018,39(03):872-880.
    [14] 张智超, 陈育民. 微型桩–加筋土挡墙的模型试验和数值模拟分析 [J]. 岩石力学与工程学报, 2017, 36(04): 987-996.ZHANG Zhichao, CHEN Yumin. Model tests and numerical simulation analysis of micropile-reinforced soil retaining walls [J]. CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, 2017, 36(04): 987-996.
    [15] Zheng Gang, Yu Xiaoxuan, Zhou Haizuo, et al. Influence of geosynthetic reinforcement on the stability of an embankment with rigid columns embedded in an inclined underlying stratum[J]. GEOTEXTILES AND GEOMEMBRANES, 2021,49,(1):180-187.
    [16] 陈义军,刘长武,徐进,等.山区公路斜坡填筑路堤应力形变特征及影响因素分析[J].岩土力学,2009,30(04):1051-1056.CHEN Yijun, NIU Changwu, XU Jin, et al. Analysis of stress deformation characteristics and influencing factors of slope filling embankments for mountain highways [J]. Rock and Soil Mechanics,2009,30(04):1051-1056.
    [17] Yang Shangchuan, Gao Yufeng, BenLeshchinsky, et al. Internal stability analysis of reinforced convex highway embankments considering seismic loading[J]. GEOTEXTILES AND GEOMEMBRANES, 2020, 48, (3):221-229.
    [18] QIAN Wangping, QI Taiyue, YI Haiyang, et al. Evaluation of structural fatigue properties of metro tunnel by model test under dynamic load of high-speed railway[J]. Tunnelling and Underground Space Technology, 2019, 93: 103099.
    [19] 蒋红光,边学成,徐翔,等.列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J].岩土工程学报,2014,36(02):354-362.JIANG Hongguang, BIAN Xuecheng, XU Xiang, et al. Full Scale Physical Model Tests on the Dynamic State of High-Speed Railway Slab Track Subgrade under Moving Train Loads [J]. Chinese Journal of Geotechnical Engineering, 2014,36(02):354-362.
    [20] 刘晓红, 杨果林, 方薇. 武广高铁无碴轨道路堑基床长期动力稳定性评价[J].中南大学学报(自然科学版),2011,42(5):1393-1398.LIU Xiaohong, YANG Guolin, FANG Wei. Evaluation of long-term dynamic stability of Wuhan-Guangzhou high-speed railway sub-ballast track moat bed [J]. Journal of Central South University (Science and Technology), 2011,42(5):1393-1398.
    [21] 宋小林,翟婉明.高速移动荷载作用下CRTSⅡ型板式无砟轨道基础结构动应力分布规律[J].中国铁道科学,2012,33(04):1-7.SONG Xiaolin, QU Wanming. Dynamic stress distribution law of CRTSⅡ type slab ballast track foundation structure under high-speed moving loads [J]. CHINA RAILWAY SCIENCE,2012,33(04):1-7.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:80
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-16
  • 最后修改日期:2024-10-21
  • 录用日期:2024-11-22
文章二维码