木质素纤维-石灰复合改良膨胀土力学特性与微观结构分析
作者:
作者单位:

1.上海大学力学与工程科学学院;2.上海申通地铁建设集团有限公司

中图分类号:

TU443

基金项目:

国家自然科学基金


Mechanical properties and microstructural analysis of lignin fibler-lime composite expansive soils
Author:
Affiliation:

1.School of Mechanics and Engineering Science,Shanghai University;2.Shanghai Shentong Metro Construction Group Co.,Ltd.

Fund Project:

National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    膨胀土是一种特殊的问题土,具有遇水膨胀失水收缩的工程特性,对气候影响较为敏感,极易诱发边坡失稳、滑坡等工程灾害。传统无机化学改良剂(如石灰、水泥等)虽能有效提高土体强度,但此类改良剂普遍存在高碳排放等环境问题。本研究采用一种新型绿色低碳材料——木质素纤维(LF)用于膨胀土的改良,通过无侧限抗压试验、直剪试验、无荷膨胀率试验、压汞试验和扫描电镜试验,研究木质素纤维改良膨胀土的力学性能,并分析了改良剂的掺量比以及养护龄期对木质素纤维-石灰复合改良土的力学性能和微观结构的影响。结果表明,木质素纤维能显著提高膨胀土的抗剪、抗压强度,其最优掺量为8%;在最佳掺量比条件下,复合改良土的力学性能接近于4%石灰改良土;木质素纤维有效改善膨胀土的微观孔隙结构,增强土颗粒间的联结作用。研究成果表明新型低碳材料木质素纤维对膨胀土的工程特性具有较好的改良效果,并可部分替代、减少传统改良剂的使用。

    Abstract:

    Expansive soil is a typically problematic soil that exhibits the engineering characteristics of swelling and shrinkage. It is highly sensitive to climatic changes, often leading to engineering disasters such as slope instability and landslides. While traditional inorganic chemical modifiers (such as lime, cement, etc.) can effectively improve soil strength, these modifiers are associated with environmental issues, particularly high carbon emissions. This study investigated the use of a novel green, low-carbon material—lignin fiber (LF)—for the modification of expansive soil. Unconfined compressive strength test, direct shear test, free swell test, mercury intrusion porosimetry, and scanning electron microscope were performed to analyze the mechanical properties of lignin fiber improved expansive soil. The effects of modifier dosage and curing age on the mechanical properties and microstructure of lignin fiber-lime composite-treated soil were also studied. The results indicated that 8% lignin fiber significantly improved both the shear and compressive strengths of expansive soil. After the optimal treatment, the mechanical properties of the composite improved soil were comparable to those of 4% lime-treated soil. Lignin fiber can effectively enhance the micro-structure of expansive soil by enhancing the bonds among soil particles. The results illustrated that lignin fiber, as a new low-carbon material, can significantly improve the engineering properties of expansive soil, to partially replace or reduce the use of traditional modifiers in the field of soil improvement.

    参考文献
    [1] 孙德安, 张俊然, 吕海波. 全吸力范围南阳膨胀土的土-水特征曲线[J]. 岩土力学, 2013, 34(7): 1839-1846.SUN D A, ZHANG J R, Lü H B. Full suction range Nanyang expansive soil''s soil-water characteristic curve[J]. Rock and Soil Mechanics, 2013, 34(7): 1839-1846. (in Chinese)
    [2] 王澄菡, 查文华, 王京九. 膨胀土的胀缩机理及新型处理方法综述[J]. 路基工程, 2020, (2): 6-11.WANG C H, ZHA W H, WANG J J, et al. Summary of swelling and shrinking mechanisms of expansive soil and new treatment methods[J]. Subgrade Engineering, 2020, (2): 6-11. (in Chinese)
    [3] 高磊, 胡国辉, 杨晨, 等. 玄武岩纤维加筋黏土的剪切强度特性[J]. 岩土工程学报, 2016, 38(S1): 231-237.7.GAO L, HU G H, YANG C, et al. Shear strength characteristics of basalt fiber reinforced clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 231-237. (in Chinese)
    [4] 尤波, 徐洪钟, 董金梅. 玄武岩纤维加筋膨胀土三轴试验研究[J]. 防灾减灾工程学报, 2015, 35(4): 503-507+514.YOU B, XU H Z, DONG J M. Triaxial test study on expansive soil reinforced with basalt fiber[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(4): 503-507+514. (in Chinese)
    [5] GHAZAVI M, ROUSTAEI M. Freeze-thaw performance of clayey soil reinforced with geotextile layer[J]. Cold Regions Science and Technology, 2013, 89: 22-29.
    [6] WU Y K, QIAO X L, YU X B, et al. Study on properties of expansive soil improved by steel slag powder and cement under freeze-thaw cycles[J]. KSCE Journal of Civil Engineering, 2021, 25(2): 417-428.
    [7] 吴燕开, 乔晓龙, 李丹丹, 等. 干湿循环下钢渣粉水泥改良膨胀土室内试验研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(3): 319-329.WU Y K, QIAO X L, LI D D, et al. Indoor experimental study on expansive soil improved by steel slag powder and cement under wet-dry cycles[J]. Journal of Xi''an University of Architecture Technology (Natural Science Edition), 2021, 53(3): 319-329. (in Chinese)
    [8] 张鑫, 孙树林, 魏永耀, 等. 掺绿砂改良膨胀土室内试验研究[J]. 岩土力学, 2012, 33(Z2): 209-212.ZHANG X, SUN S L, WEI Y Y, et al. Indoor experimental study on expansive soil improved with greensand[J]. Rock and Soil Mechanics, 2012, 33(Z2): 209-212. (in Chinese)
    [9] 张涛, 蔡国军, 刘松玉, 等. 橡胶-砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39(6): 1082-1088.ZHANG T, CAI G J, LIU S Y, et al. Experimental study on strength characteristics and micro-mechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1082-1088. (in Chinese)
    [10] 董柏林, 黄华慧, 裴沛雯, 等. 碎石改良膨胀土膨胀特性实验研究[J]. 地下空间与工程学报, 2018, 14(5): 1213-1217.DONG B L, HUANG H H, PEI P W, et al. Experimental study on expansion characteristics of expansive soil improved by crushed stone[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1213-1217. (in Chinese)
    [11] 周志清, 王定鹏. 建筑垃圾改良膨胀土填筑路基可行性研究[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(5): 716-722.ZHOU Z Q, WANG D P. Feasibility study on using construction waste to improve expansive soil for subgrade filling[J]. Journal of Xi''an University of Architecture Technology (Natural Science Edition), 2021, 53(5): 716-722. (in Chinese)
    [12] ELKADY T Y, SHAKER A A. Role of cementation and suction in the swelling behavior of lime-treated expansive soils[J]. Journal of Materials in Civil Engineering, 2018, 30(5): 04018073.
    [13] 王叶娇, 王有为, 靳奉雨, 等. 石灰改良土的土水特征曲线及其冻结特征曲线[J]. 防灾减灾工程学报, 2020, (6): 967-973.WANG Y J, WANG Y W, JIN F Y, et al. Soil-water characteristic curve and freezing characteristic curve of lime-improved soil[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, (6): 967-973. (in Chinese)
    [14] POR S, NISHIMURA S, LIKITLERSUANG S. Deformation characteristics and stress responses of cement-treated expansive clay under confined one-dimensional swelling[J]. Applied Clay Science, 2017, 146: 316-324.
    [15] DARMIYANTI D, RACHMANSYAH A, MUNAWIR A, et al. Voltage optimization in expansive soil improvement with saline solution on swelling and shear strength[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1263(1): 012050. (in Chinese)
    [16] 蔺建国, 叶加兵, 邹维列, 等. 孔隙溶液对膨胀土微观结构的影响[J]. 华中科技大学学报(自然科学版), 2020, 48(4): 12-17.LIN J G, YE J B, ZOU W L, et al. The effect of pore solution on the microstructure of expansive soil[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(4): 12-17. (in Chinese)
    [17] 董超凡, 张吾渝, 孙翔龙, 等. 木质素纤维改良黄土抗剪强度的试验研究[J]. 安全与环境工程, 2022, 29(2): 102-110.DONG C F, ZHANG W Y, SUN X L, et al. Experimental study on the shear strength of loess improved by lignin fiber[J]. Safety and Environmental Engineering, 2022, 29(2): 102-110. (in Chinese)
    [18] 陈诚, 郭伟, 任宇晓. 冻融循环条件下木质素纤维改良土性质研究及微观分析[J]. 岩土工程学报, 2020, 42(S2): 135-140.CHEN C, GUO W, REN Y X. Study and microscopic analysis of soil properties improved by lignin fiber under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 135-140. (in Chinese)
    [19] 王玉林, 卢东, 徐宁. 木质素纤维对再生透水沥青混合料路用性能研究[J]. 公路, 2021, (2): 52-56.WANG Y L, LU D, XU N. Study on the road performance of regenerated permeable asphalt mixture improved by lignin fiber[J]. Highway, 2021, (2): 52-56. (in Chinese)
    [20] 谢明君, 温宇彤, 徐玲琳, 等. 木质素/玻璃纤维复合改性沥青混凝土路用性能提升效果研究[J]. 建筑材料学报, 2023, 26(11): 1200-1206.XIE M J, WEN Y T, XU L L, et al. Study on the performance enhancement effect of lignin/glass fiber composite modified asphalt concrete for road use[J]. Journal of Building Materials, 2023, 26(11): 1200-1206. (in Chinese)
    [21] NICHOLLS R L, DAVIDSON D T. Polyacids and lignin used with large organic cations for soil stabilization[C]//Highway Research Board Proceedings. 1958, 37: 517-537.
    [22] MOSLEMI A, TABARSA A, MOUSAVI S Y, et al. Shear strength and microstructure characteristics of soil reinforced with lignocellulosic fibers-sustainable materials for construction[J]. Construction and Building Materials, 2022, 356: 129246.
    [23] 唐朝生, 施斌, 蔡奕, 等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学, 2007, 28(9): 1796-1800.TANG C S, SHI B, CAI Y, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796-1800.
    [24] 董超凡, 林城, 张吾渝, 等. 寒旱区木质素纤维改良黄土的热学与力学性质研究[J]. 干旱区资源与环境, 2022, 36(5): 119-126.DONG C F, LIN C, ZHANG W Y, et al. Study on the thermal and mechanical properties of loess improved by lignin fiber in cold and arid regions[J]. Journal of Arid Land Resources and Environment, 2022, 36(5): 119-126. (in Chinese)
    [25] 董吉, 陈筠, 邬忠虎, 等. 木质素纤维红黏土强度及变形特性试验研究[J]. 地质力学学报, 2019, 25(3): 421-427.DONG J, CHEN Y, WU Z H, et al. Experimental study on the strength and deformation characteristics of red clay improved by lignin fiber[J]. Journal of Geological Mechanics, 2019, 25(3): 421-427. (in Chinese)
    [26] 陈颖辉, 蔡祎, 欧明喜. 木质素纤维-高钙粉煤灰复合改良膨胀土试验研究[J]. 安全与环境学报, 2023: 1-11.CHEN Y H, CAI Y, OU M X. Experimental study on expansive soil improved by a composite of lignin fiber and high calcium fly ash[J]. Journal of Safety and Environment, 2023: 1-11. (in Chinese)
    [27] 樊科伟, 严俊, 刘苓杰, 等. 木质素纤维改性季冻区膨胀土强度特性与微观结构研究[J]. 中南大学学报(自然科学版), 2022, 53(1): 326-334.FAN K W, YAN J, LIU L J, et al. Study on the strength characteristics and microstructure of expansive soil modified by lignin fiber in seasonal frozen regions[J]. Journal of Central South University (Science and Technology), 2022, 53(1): 326-334. (in Chinese)
    [28] 龚锦林, 柳厚祥, 王真. 石灰改良膨胀土压缩特性及力学特性研究[J]. 交通科学与工程, 2022, 38(4): 35-40.GONG J L, LIU H X, WANG Z. Study on the compressive and mechanical properties of expansive soil improved by lime[J]. Journal of Transportation Science and Engineering, 2022, 38(4): 35-40. (in Chinese)
    [29] JHA A K, SIVAPULLAIAH P V. Lime stabilization of soil: a physico-chemical and micro-mechanistic perspective[J]. Indian Geotechnical Journal, 2020, 50(3): 339-347.
    [30] 土工试验方法标准:GB/T 50123-2019[S]. 北京: 中国计划出版社, 2019.Standard for geotechnical testing method: GB/T 50123-2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [31] 孙德安, 汪健, 何家浩, 等. 原状扬州黏性土压缩特性与孔径分布[J]. 水文地质工程地质, 2020, (1): 111-116.SUN D A, WANG J, HE J H, et al. Compression characteristics and pore size distribution of undisturbed Yangzhou clayey soil[J]. Hydrogeology Engineering Geology, 2020, (1): 111-116. (in Chinese)
    [32] 吕海波, 汪稔, 赵艳林, 等. 软土结构性破损的孔径分布试验研究[J]. 岩土力学, 2003, 24(4): 573-578.Lü H B, WANG R, ZHAO Y L, et al. Experimental study on pore size distribution of structural damage in soft soil[J]. Rock and Soil Mechanics, 2003, 24(4): 573-578. (in Chinese)
    [33] 杨洋, 姚海林, 陈守义. 广西膨胀土的孔隙结构特征[J]. 岩土力学, 2006, 27(1): 155-158.YANG Y, YAO H L, CHEN S Y. Pore structure characteristics of expansive soil in Guangxi[J]. Rock and Soil Mechanics, 2006, 27(1): 155-158. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:87
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-09-08
  • 最后修改日期:2025-02-24
  • 录用日期:2025-03-05
文章二维码