一种基于特征选择的CNN-LSTM结构应变响应预测方法
DOI:
CSTR:
作者:
作者单位:

太原理工大学土木工程学院

作者简介:

通讯作者:

中图分类号:

TU375.4

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A CNN-LSTM structural strain response prediction method based on feature selection
Author:
Affiliation:

College of Civil Engineering, Taiyuan University of Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在建筑结构的长期服役过程中,可能会受到多种外部和内部因素的影响,导致部分关键构件发生失效。结构应变响应能够直观地反映这些构件的运行状态,因此,准确预测结构的应变响应对建筑结构的长期监测具有重要意义。本文提出一种基于特征选择的CNN-LSTM结构应变响应预测方法,并基于北疆明珠塔健康监测系统实测数据对该方法进行验证。对输入模型的特征进行Pearson相关性分析,并进一步的利用随机森林算法对各特征的重要性进行排序和选择,确定了输入模型的特征。利用该方法建立了CNN-LSTM结构应变响应预测模型,采用贝叶斯优化算法对模型超参数进行精细调整以提高模型的预测精度,并与常规LSTM模型和BiLSTM模型的预测结果进行了比较。研究结果表明,CNN-LSTM模型在所有应变测点上的预测值与实际值之间的相关系数均超过了0.99,显示出该模型在预测构件应变响应方面的优越性能,且相较于LSTM和BiLSTM模型,CNN-LSTM模型具有更高的预测精度。

    Abstract:

    During the long-term service of a building structure, various external and internal factors can lead to the failure of key components. The structural strain response serves as an intuitive indicator of the operational status of these components. Therefore, accurately predicting the structural strain response is crucial for the long-term monitoring of building structures. In this paper, we propose a CNN-LSTM-based method for predicting structural strain responses, enhanced through feature selection, and validate it using measured data from the health monitoring system of the Pearl Tower in Northern Xinjiang. The input model’s features are determined through Pearson correlation analysis, and their importance is ranked and selected using the random forest algorithm. We developed a CNN-LSTM structural strain response prediction model and applied the Bayesian optimization algorithm to fine-tune the model’s hyperparameters, thereby enhancing its prediction accuracy. We then compared the prediction results with those obtained from conventional LSTM and BiLSTM models. The results demonstrate that the correlation coefficients between the predicted and actual values of the CNN-LSTM model at all strain measurement points exceed 0.99. This indicates the model’s superior performance in predicting the strain response of components, as well as its higher prediction accuracy compared to the LSTM and BiLSTM models.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-21
  • 最后修改日期:2025-02-18
  • 录用日期:2025-03-05
  • 在线发布日期:
  • 出版日期:
文章二维码