基于改进DeepLabV3+的既有钢结构表面锈蚀图像分割方法
作者:
作者单位:

1.西南石油大学 土木工程与测绘学院;2.西南交通大学 土木工程学院

中图分类号:

TU391;TP391.4

基金项目:

国家自然科学基金(52078442);四川省科技计划项目(2021YJ0038);桥梁无损检测与工程计算四川省高校重点实验室开放基金项目(2024QZJ03)


Image segmentation approach for surface rust of existing steel structures based on improved DeepLabV3+
Author:
Affiliation:

1.School of Civil Engineering and Surveying,Southwest Petroleum University;2.School of Civil Engineering,Southwest Jiaotong University

Fund Project:

National Natural Science Foundation of China (No. 52078442); Science and Technology Program of Sichuan Province (No. 2021YJ0038); Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (No. 2024QZJ03)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    表面锈蚀是钢结构中普遍存在的缺陷形式,锈蚀会削弱构件截面,降低其力学性能,因此对钢结构锈蚀损伤进行监测及状态评价必不可少。针对人工目测易出现视觉疲劳造成读数、纹理和颜色判断错误,经典深度学习锈蚀识别网络分割精度低、参数量大等问题,提出一种轻量化HL-DeepLabV3+的锈蚀图像语义分割模型。首先,将编码部分的主干网络替换成轻量化的MobileNetV3网络,降低模型参数量;其次,在空洞空间金字塔池化模块引入条形池化模块和金字塔池化模块,使网络能捕获孤立锈蚀区域的长距离依赖关系,消除背景区域干扰;最后,引入注意力机制,使网络更加关注图像中对锈蚀分类起决定作用的像素区域,增强锈蚀的特征表达能力。试验结果表明:HL-DeepLabV3+模型相比原模型大小减少了66.73%,在Accuracy、mIoU、MPA和F1分数上分别提高了2.54%、10.11%、6.79%、6.15%,且效果优于经典的UNet、FCN、SegNet和DeepLabV3+语义分割模型,在实现模型轻量化的同时还提升了对锈蚀损伤的分割精度。

    Abstract:

    Surface corrosion constitutes a prevalent defect form in steel structures, which can undermine the section of components and deteriorate their mechanical properties. Thus, it is imperative to monitor and assess the corrosion damage of steel structures. A lightweight semantic segmentation model for rust images, based on HL-DeepLabV3+, has been proposed to address the challenges of reading errors, texture misjudgments, and color discrepancies caused by visual fatigue during manual inspections. This model aims to improve segmentation accuracy while reducing the parameter count associated with traditional deep learning networks used in rust recognition. Firstly, the coding portion of the backbone network was replaced with a lightweight MobileNetV3 network to minimize the number of model parameters. Secondly, the strip pool module and pyramid pool module were incorporated into the void space pyramid pool module, enabling the network to capture the long-range dependence of isolated rust regions and eliminate the interference in the background region. Finally, the attention mechanism was introduced to make the network focus more on the pixel region that plays a decisive role in rust classification and enhance the feature expression ability of rust. The test results indicate that: Compared with the original model, the size of the HL-DeepLabV3+ model is reduced by 66.73%, and the Accuracy, mIoU, MPA, and F1 scores are increased by 2.54%, 10.11%, 6.79%, and 6.15% respectively. Moreover, the effect is superior to the classical UNet, FCN, SegNet, and DeepLabV3+ semantic segmentation models. This not only realizes the lightweight of the model but also enhances the segmentation accuracy of rust damage.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-28
  • 最后修改日期:2024-12-25
  • 录用日期:2025-01-22
文章二维码