循环荷载下道路应急抢通聚氨酯材料力学特性研究
作者单位:

1.三峡大学;2.陆军工程大学

中图分类号:

U414

基金项目:

湖北省交通运输厅科技项目(20221164)


Study on the Mechanical Characteristics of Polyurethane Materials for Emergency Road Recovery under Cyclic Loading
Author:
Affiliation:

1.China Three Gorges University;2.Army Engineering University of PLA

Fund Project:

Scientific Research Project of Department of Transport of Hubei Province (No. 20221164)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    聚氨酯发泡材料以其快速膨胀、高强、轻质及憎水等特点,在水毁道路等的临时抢通中有着重要的工程价值。为了研究车辆循环荷载作用下换填临时路基的聚氨酯材料力学性能,分别对聚氨酯试样进行轴向循环加卸载压缩试验及切向循环剪切试验,分析了聚氨酯试样在不同加载频率和加载范围下的应力-应变变化规律及宏细观破坏特征。结果表明:聚氨酯试样的应变随轴向加载频率先增后减,随轴向应力加载上限值持续增大(可达到7%~8%);轴向应力加载引起的最大应变增量是加载频率相应值的4倍,对试样应变的影响更为显著;切向循环加卸载下,试样主要以沿胶结面的压剪破坏和沿竖向裂隙-胶结面处的拉剪破坏为主,切向力加载范围的增大会引起试样变形的明显增加(最大应变达5%~6%),最终出现沿胶结面的压剪破坏;增加一定的轴向力(不宜超过单轴抗压强度的90%)能更好压实聚氨酯材料,进而能改善其抗剪性能,在工程应用中,应当尽量避免轴向(法向)力较小或无加载时让聚氨酯材料处于循环剪切受力状态。

    Abstract:

    Polyurethane foam material, with its rapid expansion, high strength, lightweight, and water-repellent characteristics, has significant engineering value in temporary repair works such as emergency road clearance after water damage. To study the mechanical characteristics of polyurethane materials for subgrade under cyclic loading, axial cyclic loading and unloading compression test , and tangential cyclic shear test were carried out on polyurethane samples containing interface, and the change rule of stress-strain law and macro and micro damage characteristics of polyurethane samples wereanalyzed under different loading frequencies and loading ranges. The results show that: The strain of polyurethane samples increases and then decreases with the frequency of axial loading, and continuously increases with the upper limit of axial stress loading (up to 7%~8%); the maximum strain increment induced by axial stress loading is four times the corresponding value for the loading frequency, which has a more significant effect on the sample strain; under axial cyclic loading and unloading, the sample is mainly subjected to compression-shear damage along the cemented surface and tensile-shear damage along the vertical fissure-cohesive surface, the increase in the loading range of the tangential force causes a significant increase in the deformation of sample (up to 5%~6%), and eventually compression-shear damage along the cemented surface occurs; increase a certain amount of axial force (should not exceed 90% of the uniaxial compressive strength) can be better compaction of polyurethane materials, which can improve its shear performance, in engineering applications, it is advisable to avoid placing polyurethane materials in a cyclic shear stress state when the axial force is small or there is no loading.

    参考文献
    [1] 董晶亮,卢普光,丁杨,等. 屋面保温隔热材料耐候性试验设计[J]. 塑料,2019,48(04): 115-117+121.
    [2] 江小浦,胡书可. 高性能水性聚氨酯涂料的发展及改性研究[J]. 表面技术,2020,49(11): 296-302.
    [3] 向臻. 动态二硫键与氢键协同作用的多功能聚氨酯脲的研究[D]. 成都: 西南交通大学,2021.
    [4] 马丽红. 硬质聚氨酯泡沫塑料研究进展[J]. 石化技术,2016,23(06): 24-25+36.
    [5] 郭桂宏,丛林,杨帆,等. 聚氨酯材料在路面工程中的应用进展[J]. 公路交通科技,2020,37(06): 1-10.
    [6] XIA C Y. Discussion on Repair Method of Concrete Highway Pavement[J]. Applied Mechanics and Materials, 2013, 321: 209-212.
    [7] 高屹. 机场道面快速抢修试验研究[D]. 天津: 天津大学,2007.
    [8] 陶伟明,卢春房,叶长文等. 聚氨酯复合注浆材料浆液扩散特性及应用研究[J]. 铁道学报,2023,45(07): 1-9.
    [9] 郭豪,贾非,陈琰霏,等. 应变速率对硬质聚氨酯准静态拉伸行为的影响[J]. 材料导报,2022,36(05): 216-219.
    [10] 李岩,李文,张华建,等. 桥梁无缝伸缩缝用改性聚氨酯研发及足尺试验研究[J]. 硅酸盐通报,2023,42(11): 3853-3865.
    [11] Li J, Xu P, Guo J, et al. Recyclable porous polyurethane sponge for highly efficient oil–water separation[J]. Journal of Applied Polymer Science, 2023, 141(3):
    [12] CHEN J, YIN X, WANG H. et al. Evaluation of Durabiliy and Functional performance of Porous Polyurethane Mixture in Porous Pavementj[J]. Journal of Cleaner Production, 2018, 188: 12-19.
    [13] CHEN B, XIONG W, ZHOU C, et al. Anti-fouling and anti-corrosion polyurethane acrylate coatings with excellent adhesion prepared by photosensitive bio-based tannic acid and perfluorinated chain extender for PCBs protection[J]. Progress in Organic Coatings, 2024, 189: 108319.
    [14] 金鑫,郭乃胜,尤占平,等. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报,2019,33(21): 3686-3694.
    [15] 谢康,苏谦,陈晓斌,等. 无砟轨道聚氨酯碎石防水联结层单元模型试验研究[J]. 岩土力学,2023,44(08): 2308-2317.
    [16] 赖振峰,王万金,夏义兵,等. 高强度聚氨酯防水涂料在城际铁路桥面防水工程中的应用研究[J]. 中国建筑防水,2016,(02): 28-30.
    [17] 温宇彤,徐玲琳,谢明君,等. PU—SBS复合改性沥青的高温性能试验研究[J]. 土木与环境工程学报(中英文),2022,44(06):162-169.
    [18] Kahtani A M S M, Zhu H, Ibrahim E Y, et al. Study on the Mechanical Properties of Polyurethane-Cement Mortar Containing Nanosilica: RSM and Machine Learning Approach[J]. Applied Sciences, 2023, 13(24): 13348.
    [19] 魏同军,李涛,朱孔法,等. 聚氨酯增韧环氧树脂裂缝修补材料性能研究[J]. 热固性树脂,2023,38(06): 9-15.
    [20] 陈杨杰,张雄飞,卢小莲,等. 混凝土裂缝修补材料环氧树脂的聚氨酯增韧改性研究[J]. 公路交通科技,2019,36(09): 24-30.
    [21] Kenan L, Xili Y, Tao A, et al. Study on properties and application of chloroprene rubber/polyurethane modified asphalt sealant[J]. Construction and Building Materials, 2023, 406.
    [22] Jiayun X, Biao M, Fangshu L, et al. Study of the Bonding Performance and Application of an Epoxy Resin Pavement Sealant[J]. Journal of Materials in Civil Engineering, 2023, 35(7): 04023183.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:41
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-07
  • 最后修改日期:2024-12-16
  • 录用日期:2024-12-20
文章二维码