考虑采样间距的岩石节理面粗糙度表征与强度预测方法研究
DOI:
CSTR:
作者:
作者单位:

长沙理工大学

作者简介:

通讯作者:

中图分类号:

基金项目:

湖南省自然科学(2022JJ40491);湖南省教育厅青年(22B0295)


Research on characterization of rock joint surface roughness and strength prediction method considering sampling spacing
Author:
Affiliation:

1.Changsha University Of Science &2.Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    岩石节理面粗糙程度是决定其抗剪强度的最主要因素,当前岩石节理面粗糙度多采用斜率均方根(Z2)值表达,而该数值与节理面数值化过程中的采样间距密切相关。为了进一步提高岩石节理面粗糙度的计算精度,本文开展了考虑采样间距的岩石节理面粗糙度表征与强度预测方法研究。主要研究结果为:不同类型岩石劈裂后节理面粗糙度不同,花岗岩节理面粗糙度最大,石英岩次之,最后为红砂岩和泥岩;不同节理面轮廓线的Z2值均随着采样间距的增大而呈现线性下降的规律。并且节理面的起伏程度越大,采样间距对Z2值得影响越为明显。基于对数函数建立了考虑采样间距的节理面粗糙度系数计算公式,该式较原有JRC预测模型的物理意义更加明晰且预测精度更高。

    Abstract:

    The roughness of rock joint surfaces is the most important factor in determining their shear strength. Currently, the roughness of rock joint surfaces is mostly expressed using the root mean square slope (Z2) value, which is closely related to the sampling interval in the process of digitizing joint surfaces. To further improve the calculation accuracy of rock joint surface roughness, this paper conducted research on the characterization and strength prediction methods of rock joint surface roughness considering sampling interval. The main research results are as follows: First, the roughness of joint surfaces varies among different types of rocks after splitting, with granite exhibiting the highest roughness, followed by quartzite, and then red sandstone and mudstone. Second, the Z2 values of different joint surface contour lines show a linear decrease with the increase of sampling interval. And the greater the fluctuation of the joint surface, the more obvious the influence of sampling interval on Z2 value. A calculation formula for the joint surface roughness coefficient, which considers the sampling interval, was established based on a logarithmic function. This new formula offers clearer physical meaning and higher prediction accuracy compared to the original JRC prediction model.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-09
  • 最后修改日期:2025-02-09
  • 录用日期:2025-03-05
  • 在线发布日期:
  • 出版日期:
文章二维码