杂填土斜坡场地强夯振动传播规律与影响参数分析
作者:
作者单位:

1.西安建筑科技大学;2.山西金宝岛基础工程有限公司;3.西安建筑科技大学 ,中联西北工程设计研究院有限公司;4.西安建筑科技大学 ,机械工业勘察设计研究院有限公司

中图分类号:

TU441.4

基金项目:

国家自然科学基金项目(42277151、42307277);陕西省秦创原“科学家+工程师”团队建设项目(2022KXJ-086)


Analysis of Vibration Propagation and Influencing Parameters in Dynamic Compaction of Miscellaneous Fill Slope
Author:
Affiliation:

1.Xi’an University of Architecture and Technology;2.Shanxi Jin Baodao Foundation Engineering Co,Ltd;3.Xi’an University of Architecture and Technology,China United Northwest Institue for Engineering Design &4.Research Co., Ltd.;5.Xi’an University of Architecture and Technology,China JiKan Research Institute of Engineering Investigations and Design, Co., Ltd.

Fund Project:

National Natural Science Foundation of China (No. 42277151, 42307277); Shaanxi Province Qin Chuangyuan "Scientist+Engineer" Team Construction Project (No. 2022KXJ-086)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在杂填土坡地和平坦场地中对比分析了4000kN·m、12000kN·m、25000kN·m能级下振源距、夯击能、夯沉量3种独立因素对振动速度的影响规律,在此基础上,结合Bp神经网络与Sobol敏感性分析法分析了上述3种因素对振动速度影响的强弱。结果表明:坡地场地中振动速度在坡肩~坡底范围内符合负指数函数关系,坡肩存在“能量集中”效应,坡肩的振动速度大于相同振源距的平坦场地;杂填土边坡中振动速度大多介于4~25 mm/s之间,振动速度与夯击能之间符合负指数函数关系,夯击能对振动速度的影响有限;随着夯沉量的增大,振动速度增长先快后慢,最终趋于稳定,在累计夯沉量-夯沉量曲线的“下凹”折点后,振动速度增长或增长率增大,在“上凸”型折点后,振动速度减小或增长率衰减。夯沉量对振动速度的全效应敏感性指数为振源距的1.55 倍、夯击能的 5.93 倍,减小夯沉量对减轻振动的效果最明显,振源距次之,夯击能最小。

    Abstract:

    The influence of three independent factors, i.e.vibration source distance, tamping energy and tamping settlement, on the vibration velocity under the energy levels of 4000kN · m, 12000kN · m and 25000kN · m was compared and analyzed in the miscellaneous fill slope and flat site. On this basis, the Bp neural network and Sobol sensitivity analysis method were used to analyze the influence of the above three factors on the vibration velocity. The results indicate that in slope sites, vibration velocity follows a negative exponential relationship from the slope’s shoulder to its base. An "energy concentration" effect is observed at the slope's shoulder, where the vibration velocity is higher than that of flat sites at the same source distance. In miscellaneous fill slopes, vibration velocity mostly ranges between 4 and 25 mm/s, and though it also follows a negative exponential relationship with impact energy, the effect of energy on vibration velocity is limited. As tamping settlement increases, vibration velocity initially rises rapidly, then slows, eventually stabilizing. After reaching a "concave" inflection point on the cumulative tamping curve, the velocity increases or the growth rate accelerates; beyond a "convex" inflection point, the velocity decreases or the growth rate slows. Sensitivity analysis shows that tamping settlement has the greatest influence on vibration velocity, being 1.55 times more significant than source distance and 5.93 times more significant than tamping energy. Reducing tamping settlement is the most effective way to lower vibration, followed by increasing source distance, with tamping energy having the smallest effect.

    参考文献
    [1] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报,2016,49(01):96-115.Liu Hanlong, Zhao Minghua. Research progress of foundation treatmen Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49 (01): 96-115. (in Chinese)
    [2] 董炳寅,水伟厚,秦劭杰.中国强夯40年之技术创新[J].地基处理,2022,4(01):1-16.Dong Bingyin, Shui Weihou, Qin Shaojie. Technological innovation of dynamic compaction in China for forty years [J]. Journal of Ground Improvement, 2022, 4(01): 1-16. (in Chinese)
    [3] HWANG J H, TU T Y. Ground vibration due to dynamic compaction[J]. Soil Dynamics & Earthquake Engineering, 2006, 26(5): 337–346.
    [4] 赵家琛,吕江,赵晖,等.高能级强夯处理抛填路基的有效加固深度[J]. 土木与环境工程学报(中英文), 2021, 43(05): 27-33.Zhao Jiachen, Lu Jiang, Zhao Hui, et al. Effective reinforcement depth of dump fill roadbed treated by high-energy dynamic compaction[J]. Journal of Civil and Environmental Engineering, 2021, 43(05): 27-33. (in Chinese)
    [5] Fathi Afshar N, Hamidi A, Tavakoli Mehrjardi G. Impact of diffraction on screening of dynamic compaction waves with barriers[J]. Innovative Infrastructure Solutions, 2024, 9(6): 184.
    [6] Rollins K M, Jorgensen S J, Ross T E. Optimum Moisture Content for Dynamic Compaction of Collapsible Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(8): 699-708.
    [7] 闫东霄, 邓小龙. 路基强夯振动衰减规律及对临近构筑物影响分析[J]. 公路, 2022, 67(06): 70-74.Yan Dongxiao, Deng Xiaolong. Analysis of vibration attenuation law of roadbed compaction and its impact on adjacent structures[J]. Highway, 2022, 67(06): 70-74. (in Chinese)
    [8] 詹金林, 水伟厚. 强夯法施工的环境振动监测研究[C]// 自主创新与持续增长第十一届中国科协年会论文集(1 ), 9, 8-10, 2009, 重庆, 中国, 2009: 506-514.Zhan Jinlin, Shui Weihou. Monitoring the Environment Vibration in Dynamic Compaction Construction [C]// Independent Innovation and Sustainable Growth The 11th Annual Conference of Chinese Association for Science and Technology (1 ), September 8-10, 2009, Chongqing, China, 2009 : 506-514. (in Chinese)
    [9] 刘超,梁海安,程新俊,等.城市软土地基组合锤法强夯施工振动效应研究[J]. 震灾防御技术, 2021,16(02):381-390.Liu Chao, Liang Haian, Cheng Xinjun, et al. Study on vibration effect of combined heavy tamping on soft soil foundation in city [J]. Technology for Earthquake Disaster Prevention, 2021, 16(02): 381-390. (in Chinese)
    [10] Wu S, Wei Y, Zhang Y, et al. Dynamic compaction of a thick soil-stone fill: Dynamic response and strengthening mechanisms[J]. Soil Dynamics and Earthquake Engineering, 2020, 129: 105944.
    [11] Wu J, Ma L, Shi J, et al. Investigation of ground vibration of full-stone foundation under dynamic compaction[J]. Shock and Vibration, 2019, 2019: 1-11.
    [12] 曹利,卞海丁,张哲等. 高能级强夯黄土地基振动衰减规律模型试验研究[J]. 科学技术与工程,2023,23(15): 6581-6590.Cao Li, Bian Haiding, Zhang Zhe, et al. Model test study on vibration attenuation law of high energy dynamic compaction loess foundation[J]. Science Technology and Engineering, 2023, 23(15): 6581-6590. (in Chinese)
    [13] Wu B, Ni W, Shi B, et al. Study on Elevation Effect of Vibration Velocity by Dynamic Compaction on Loess High Slope Based on Dimensional Analysis Method[J]. International Journal of Geomechanics, 2024, 24(6): 04024107.
    [14] 姚占勇,金壮,张恺,等. 公路拓宽地基强夯振动传播规律研究[J]. 科学技术与工程, 2015, 15(08): 208-213.Yao Zhanyong, Jin Zhuang, Zhang Kai, et al. Study on vibration propagation law of highway widening foundation compaction[J]. Science Technology and Engineering, 2015, 15(08): 208-213. (in Chinese)
    [15] 龚成明, 程谦恭, 刘争平. 强夯激励下黄土边坡动力响应模型试验研究[J]. 岩土力学, 2011, 32(07): 2001-2006.Gong Chengming, Cheng Qiangong, Liu Zhengping. Model test study on dynamic responses of loess slope by dynamic compaction[J]. Rock and Soil Mechanics, 2011, 32(07): 2001-2006. (in Chinese)
    [16] Vlček J, Gago F, Mihálik J, et al. Investigation of dynamic effect of rapid impact compaction[J]. Scientific Reports, 2024, 14(1): 21364.
    [17] 曲兆军,高永涛,欧阳振华. 强夯作用下土石混合体填筑边坡变形与振动特性[J]. 河南科技大学学报(自然科学版),2011,32(02):52-55+110.Qu Zhaojun, Gao Yongtao, Ouyang Zhenhua. Deformation and vibration characteristics of soil-rock mixture slope under dynamic compaction[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2011, 32(02): 52-55+11. (in Chinese)
    [18] British Standards Institution. Methods for the calibration of vibration and shock transducers -- Part 22: Shock calibration by comparison to a reference transducer: ISO 16063-22: 2005[S]. Geneva: International Organization for Standardization, 2005.
    [19] Colaço A, Costa P A, Parente C M A, et al. Ground-borne noise and vibrations in buildings induced by pile driving: An integrated approach[J]. Applied Acoustics, 2021, 179: 108059.
    [20] Haladin I, Bogut M, Lakušić S. Analysis of tram traffic-induced vibration influence on earthquake damaged buildings[J]. Buildings, 2021, 11(12): 590.
    [21] 刘远, 孙进忠, 赵体, 等.强夯地基处理效果的多道瞬态瑞雷波检测[J].地球物理学进展,2014,29(06):2910-2916.Liu Yuan, Sun Jinzhong, Zhao Ti, et al. Quantitative evaluation of dynamic consolidation effect of foundation based onmulti-channel transient rayleigh wave method [J]. Progress in Geophysics, 2014, 29(06): 2910-2916. (in Chinese)
    [22] Yang H, Duan H F, Zhu J, et al. Water Effects on Elastic S-Wave Propagation and Attenuation Across Single Clay-Rich Rock Fractures: Insights from Ultrasonic Measurements[J]. Rock Mechanics and Rock Engineering, 2024, 57(4): 2645-2659.
    [23] Toygar O, Ulgen D. A full-scale field study on mitigation of environmental ground vibrations by using open trenches[J]. Building and Environment, 2021, 203: 108070.
    [24] Chen W, Wei S, Wang W. Subslab ultra low velocity anomaly uncovered by and facilitating the largest deep earthquake[J]. Nature Communications, 2024, 15(1): 2754.
    [25] Hall Jr J R, Richart Jr F E. Dissipation of elastic wave energy in granular soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(6): 27-56.
    [26] Wu B, Ni W, Shi B, et al. Study on Elevation Effect of Vibration Velocity by Dynamic Compaction on Loess High Slope Based on Dimensional Analysis Method[J]. International Journal of Geomechanics, 2024, 24(6): 04024107.
    [27] 刘文俊,李岳,蔡靖,等.基于强夯应力波传播模型的夯击参数研究[J]. 岩土力学, 2023,44(S1): 427-435.Liu Wenjun, Li Yue, Cai Jing, et al. Selection of tamping parameters based on propagation model of dynamic compaction-induced stress wave [J]. Rock and Soil Mechanics, 2023, 44(S1): 427-435. (in Chinese)
    [28] 朱建民,于永堂,郑建国,等.基于GA-BP神经网络的黄土高填方工后沉降预测[J].地下空间与工程学报,2021,17(S1):382-386+418.Zhu Jianmin, Yu Yongtang, Zheng Jianguo, et al. Prediction of post-construction settlement of high loess -filled based on GA-BP neural network[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 382-386+418. (in Chinese)
    [29] Sobol I M. On sensitivity estimation for nonlinear mathematical models[J]. Matematicheskoe modelirovanie, 1990, 2(1): 112-118.
    [30] Zouhri W, Homri L, Dantan J Y. Handling the impact of feature uncertainties on SVM: A robust approach based on Sobol sensitivity analysis[J]. Expert Systems with Applications, 2022, 189: 115691.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:68
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-10
  • 最后修改日期:2024-11-23
  • 录用日期:2024-12-20
文章二维码