喜马拉雅山脉南坡群发性泥石流物源形变规律
作者:
作者单位:

1.北京林业大学 水土保持学院;2.成都信息工程大学 软件工程学院

中图分类号:

TU375.4


The Deformation Patterns of Debris Flow Sources in Clustered Events on the Southern Slope of the Himalayas
Author:
Affiliation:

1.College of Soil and Water Conservation,Beijing Forestry University;2.College of Software Engineering,Chengdu University of Information Technology,Chengdu

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    2021年6月15日绒辖曲群发性泥石流是喜马拉雅南坡少有的特大地质灾害事件,目前还没有针对此次群发性泥石流的物源活动规律进行深入的分析。本文利用灾前GF-1B和灾后BJ-2遥感影像对泥石流物源进行了解译,并结合多源遥感数据综合分析了区域典型冰湖变化,再基于2000-2021年184景Sentinel-1A影像,采用SBAS-InSAR技术获取了地表形变。结果表明:空间上,绒辖曲河谷两侧的形变点分布和沉降速率存在显著差异,左侧形变主要集中在暗针叶林带和灌丛带、草甸带,右侧主要集中在草甸垫状植被带和寒冻地衣带,且右侧快速沉降点的比例更高;时间上,地表形变表现为春夏季融化沉降、秋冬季冻胀抬升的季节性变化和总体沉降规律。泥石流物源方面,为泥石流提供物源的支沟沟头、平直型、凸起型坡面、主沟两侧的滑坡体,位移除明显的季节性变化外,滑坡体中上部沉降最为显著,其次是滑坡前缘,而滑坡后缘的形变相对较小,这可能是因为在重力作用下前缘物源堆积体受到来自中后部物源的推挤作用,滑坡形变主要受前缘牵引,存在形变向后缘扩展并发生整体滑移。石冰川的季节性冻胀融沉形变显著,且形变中心沉降最为剧烈。此外,雅隆错冰湖自2000年以来面积增长了近43%,且距离终碛体处两侧形变较大。本研究结果可为类似喜马拉雅山脉高寒湿润带的地质灾害预测预报提供理论支撑。

    Abstract:

    The clustering debris flows on June 15, 2021 in Rongxia Gorge was one of the catastrophic geo-hazard events in southern flanks of Himalayas. Presently, the debris flow source activity has been not examined yet. In this work, the debris flow sources were identified by the pre-event GF-1B and post-event BJ-2 high resolution images, multiple images were used to derive the glacier lake change and the ground surface deformation during 2000-2021 were obtained by SBAS-InSAR method. The results show that deformation sites on right terrain are more than the left terrain, and the velocity shows more rapid increase. The deformation sites at left terrain were in the coniferous forest zone, shrub and meadow area, while the deformation sites at right terrain were in the meadow cushion vegetation and lichen area. The ground surface deformation exhibits subsidence in spring and summer season, while heave in autumn and winter, while the subsident exceeds heave totally. For the debris flow material resources, the landslides in the tributary head, on planar and convex slope, and on channel banks all share similarities in seasonal changes, while the subsidence exhibits in decreasing order of upper part, frontal part and the head scar area. Such deformation changes may result from landslide frontal part attraction and pushing from the back part. The rocky glacier shows obvious seasonal heave and subsidence deformation and the center part deforms greatly. Additionally, the Yalongcuo Glacier lake area has increased about 43 percent since 2000 and the lateral moraine bank shows great deformation. The results of this work could contribute to the geo-hazard prediction in some alpine and humid regions of southern flanks of Himalayas.

    参考文献
    [1] MIAO X Q. Study on the Development Characteristics of Debris Flow Gully in Guorucuo Glacial Lake and Its influence on the Proposed Railway from China to Nepal in the northern Himalayas[J]. Railway Standard Design, 2022, 66(3).
    [2] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745.
    LIU C, RAO W L, SUN W K. Estimation of the Initial Collision Time Between the Indian and Eurasian Plates Using Geodetic Means[J]. Advances in Earth Science, 2023, 38(7): 745. (in Chinese)
    [4] [3] 姚令侃, 邱燕玲, 魏永幸. 青藏高原东缘进藏高等级道路面临的挑战[J]. 西南交通大学学报, 2012, 25(5): 719-734.
    YAO L K, QIU Y L, WEI Y X. Challenges in construction of railway and highway from Sichuan to Tibet through eastern margin of Tibetan Plateau[J]. Journal of Southwest Jiaotong University, 2012, 25(5): 719-734. (in Chinese)
    [6] [4] 苏晓军, 孟兴民, 张毅, 等. 中巴经济走廊地质灾害研究进展与展望[J].兰州大学学报(自然科学版),2023, 59: 5.
    SU X J, MENG X M, ZHANG Y, et al. Progress in and prospects of study on geohazards in the China-Pakistan Economic Corridor[J]. Journal of Lanzhou University (Natural Sciences), 2023, 59: 5. (in Chinese)
    [8] [5] 丁悦凯, 刘睿, 张翠兰, 等. 喜马拉雅地区叶如藏布流域冰川和冰湖变化遥感监测研究[J]. 干旱区地理, 2023, 45(6): 1870-1880.
    DING Y K, LIU R, ZHANG C L, et al. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas[J]. Arid Land Geography, 2023, 45: 1870-1880. (in Chinese)
    [10] [6] 龙飞, 龚诚, 黄海, 等. 藏东南直白沟冰崩型泥石流孕灾条件与动力特征[J]. 水土保持通报, 2022, 42(6): 31-38.
    LONG F, GONG C, HUANG H, et al. Formation Conditions and Dynamic Characteristics of Debris Flow Triggered by an Ice Avalanche at Zhibai Gully in Southeast Tibet[J]. Bulletin of Soil and Water Conservation, 2022, 42(6): 31-38. (in Chinese)
    [12] [7] 徐航, 陈宁生, 杨志全. 西藏冰湖溃决频次与径流峰值流量相关性分析[J]. 科学技术与工程, 2023, 23(9): 3641-3647.
    XU H, CHEN N S, YANG Z Q, et al. Correlation Analysis between the Frequency of Glacial Lake Outburst Floods and the Peak Runoff in Tibet[J]. Science Technology and Engineering, 2023, 23(9): 3641-3647. (in Chinese)
    [14] [8] 鲁安新, 邓晓峰, 赵尚学, 等. 2005年西藏波密古乡沟泥石流暴发成因分析[J]. 冰川冻土, 2006, (06): 956-960.
    LU A X, DENG X F, ZHAO S X, et al. Cause of debris flow in Guxiang valley in Bomi, Tibet autonomous region, 2005
    [16] [J]. Journal of Glaciology and Geocryology, 2006, 6: 956-960. (in Chinese)
    [17] [9] 高延超, 龚凌枫, 曹佳文, 等. 西藏边境地区地质灾害分布规律与危险性分析[J]. 沉积与特提斯地质, 2024, 44(3): 467-477.
    GAO Y C,GONG L F,CAO J W,et al. The distribution and risk assessment of geo-hazards in the border areas of Xizang[J]. Sedimentary Geology and Tethyan Geology,2024, 44(3): 467?477. (in Chinese)
    [19] [10] NAIR A, SINGH S K. Understanding the causes of Uttarakhand disaster of June 2013: a scientific review[C]//Proceedings of the 2nd disaster, risk and vulnerability conference, Trivandrum, India. 2014: 57-64.
    [20] [11] MA C, HU K H, LIU S, et al. Recent two runoff-triggered debris flow events in Tibet Plateau, China[J]. Landslides, 2022, 19(10): 2409-2422.
    [21] [12] 蒋宁, 苏凤环, 徐京华, 等. 尼泊尔地震重灾区同震滑坡的分形特征及其原因分析[J]. 山地学报, 2020, 38(5): 699-709.
    JIANG N, SU F H, XU J H, et al. Fractal Characteristics and Causes of Co-seismic Landslides in the Nepal Earthquake Extremely Stricken Areas[J]. Mountain Research, 2020, 38(5): 699-709. (in Chinese)
    [23] [13] 田海. 西藏波密地区冰川泥石流的成因机制分析[D]. 成都理工大学, 2018.
    TIAN H, Formation Mechanism of Glacial Debris Flow in Bomi, Tibet[D]. Chengdu University of Technology, 2018. (in Chinese)
    [25] [14] BERARDINO P, FORNARO G, LANAR R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on geoscience and remote sensing, 2002, 40(11): 2375-2383.
    [26] [15] 张亚迪, 李煜东, 董杰, 等. 时序 InSAR 技术探测芒康地区滑坡灾害隐患[J]. 2019.
    ZHANG Y D, LI Y D, DONG J, et al. Landslide hazard detection in Markam with time-series InSAR analyses[J]. National Remote Sensing Bulletin, 2019, 23(5): 987-996. (in Chinese)
    [28] [16] TORRES R, SNOEIJ P, GEUDTNER D, et al. GMES Sentinel-1 mission[J]. Remote sensing of environment, 2012, 120: 9-24.
    [29] [17] XU B, FENG G C, LI Z W, et al. Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: A case study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8): 652.
    [30] [18] LANARI R, MORA O, MANUNTA M, et al. A small-
    baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(7): 1377-1386.
    [32] [19] 赵磊, 陈尔学, 李增元, 等. 基于均值漂移和谱图分割的极化SAR影像分割方法及其评价[J]. 武汉大学学报:信息科学版, 2015, 40(8):1061-1068.DOI:10.13203/j.whugis20130681.
    ZHAO L, CHEN E X, LI Z Y, et al. Segmentation of PolSAR data based on mean-shift and spectral graph partitioning and its evaluation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1061-1068. (in Chinese)
    [34] [20] 周春霞, 鄂栋臣, 廖明生. InSAR 用于南极测图的可行性研究[J]. 武汉大学学报 (信息科学版), 2004, 29(7): 619-623.
    ZHOU C X, E D C, LIAO M S. Feasibility of InSAR application to Antarctic mapping[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 619-623. (in Chinese)
    [36] [21] STROZZI T, FARINA P, CORSINI A, et al. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry[J]. Landslides, 2005, 2: 193-201.
    [37] [22] MA C, CHEN Y X, Hu K H, et al. Climate Warming Triggered a Glacial Lake Outburst Flood and Debris Flow Events in an Alpine Watershed, Western Himalayas, Tibet Plateau[J]. Bulletin of Engineering Geology and the Environment, 2024, 83(5): 201.
    [38] [23] WANG Z L, MA C, HU K H, et al. Investigation of initiation conditions of periglacial debris flows in Sanggu watershed, Eastern Himalayas, Tibet Plateau (China)[J]. Landslides, 2023, 20(4): 813-827.
    [39] [24] Jasrotia A S, Ahmad S, Ridwan Q, et al. Estimation of Surface Ice Velocity of Durung Drung Glacier, Western Himalaya using COSI-Corr from Landsat images[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2024, 27(2): 369-381.
    [40] [25] 李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报 (信息科学版), 2019, 44(7): 967-979.
    LI Z H, SONG C, YU C, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. (in Chinese)
    [42] [26] ZHANG Y, MENG X M, JORDAN C, et al. Investigating slow-moving landslides in the Zhouqu region of China using InSAR time series[J]. Landslides, 2018, 15: 1299-1315.
    [43] [27] HERRERA G, GUTIéRREZ F, GARCíA-DAVALILLO J C, et al. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees)[J]. Remote Sensing of Environment, 2013, 128: 31-43.
    [44] [28] 周宇, 李国玉, 马巍, 等. 石冰川形成机制, 运动特征及水文效应研究进展[J]. 冰川冻土, 2023, 45(2): 409-422.
    ZHOU Y, LI G Y, MA W, et al. Formation mechanism, movement characteristics and hydrological effect of rock glaciers: a review[J]. Journal of Glaciology and Geocryology, 2023, 45(2): 409-422. (in Chinese)
    [46] [29] LIU L, MILLAR C I, WESTFALL R D, et al. Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR[J]. The Cryosphere, 2013, 7(4): 1109-1119.
    [47] [30] 许君利, 刘时银, 王建. 西藏桑日县巴玉水电站上游石冰川分布特征[J]. 冰川冻土, 2018, 40(6): 1207-1215.
    XU J L, LIU S Y, WANG J. Distribution characteristics of rock glaciers in the upstream of Bayu Hydropower Station in Sangri County, Tibet[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1207-1215. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:80
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-10-31
  • 最后修改日期:2025-02-06
  • 录用日期:2025-03-05
文章二维码