空间缆悬索桥缆鞍系统力学行为研究
作者单位:

1.西南科技大学;2.西南交通大学;3.佛山大学

中图分类号:

xxx

基金项目:

国家自然科学基金(52208209);四川省科技计划项目(2023NSFSC0891);广东省基础与应用基础研究基金(2020A1515110240)


Study of the Mechanical Behavior of the Cable-Saddle System of the Spatial Main Cable Suspension Bridge
Author:
Affiliation:

1.School of Civil Engineering and Architecture,Southwest University of Science and Technology;2.School of Civil Engineering,Southwest Jiaotong University;3.School of Civil Engineering and Transportation,Foshan University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为明确空间缆悬索桥缆鞍系统力学行为,根据两类空间索鞍的结构特征,推导了侧向力合成理论,论证了两种空间索鞍的受力模式,以某空间缆悬索桥为例,利用ABAQUS建立切片数值模型,研究了两种空间索鞍内部钢丝传力特征、侧向压力分布模式以及摩擦阻力组成。结果表明:斜平面索鞍的受力模式与平面索鞍相同,缆鞍间的侧向力均由指向圆心的径向力引起;对于空间曲线索鞍,径向力约等于由竖弯和横弯产生的径向力的矢量和,空间曲线索鞍中,外侧压力大于内侧压力;鞍槽内部应力主要集中在局部接触区域,分布符合经典赫兹理论;上下层钢丝间的力链呈菱形,力值随深度逐渐增加,但在底层存在陡降;斜平面索鞍中,索鞍基座提供了摩擦阻力的86.4%,鞍侧仅占13.6%;相比之下,空间曲线索鞍的基座提供了86.62%,鞍侧提供13.38%,在两种空间索鞍中,索鞍底面对摩擦阻力的贡献均远大于侧面。

    Abstract:

    To clarify the mechanical behavior of the cable saddle system in spatial cable-stayed suspension bridges, based on the structural characteristics of two types of spatial cable saddles, a theory of lateral force synthesis was derived, and the force patterns of the two types of spatial cable saddles were demonstrated. Taking a certain spatial cable-stayed suspension bridge as an example, a slice numerical model was established using ABAQUS to study the internal wire force characteristics, lateral pressure distribution patterns, and friction resistance composition of the two types of spatial cable saddles. The results show that the force pattern of the inclined plane saddle is the same as that of the plane saddle, and the lateral forces between the saddles are all caused by radial forces pointing to the center of the circle; for the spatial curved cable saddle, the radial force is approximately equal to the vector sum of the radial forces produced by vertical and horizontal bending, and in the spatial curved cable saddle, the outer pressure is greater than the inner pressure; the internal stress of the saddle groove is mainly concentrated in the local contact area, which is consistent with the classical Hertz theory; the force chain between the upper and lower layers of wires forms a diamond shape, with the force value gradually increasing with depth, but there is a sharp drop at the bottom layer; in the inclined plane saddle, the saddle base provides 86.4% of the friction resistance, and the saddle side only accounts for 13.6%; in contrast, the base of the spatial curved cable saddle provides 86.62%, and the saddle side provides 13.38%. In both types of spatial cable saddles, the contribution of the saddle base to friction resistance is much greater than that of the side.

    参考文献
    [1] 万田保, 王东绪, 霍学晋, 等. 空间索面地锚式悬索桥结构行为研究[J]. 桥梁建设, 2023, 53(S2):50-57.WAN T B, WANG D X, HUO X J, et al. Structural behavior of ground-anchored suspension bridges with spatial cable face[J]. Bridge Construction, 2023, 53(S2):50-57. (in Chinese)
    [2] ZHONG C, SHEN R, WANG H. Research on ultimate bearing capacity state and structure optimization of main cable saddle. Structures2021;33:28-40.
    [3] 邓小康, 李小贝. 空间缆索悬索桥倾斜母线鞍座设计位置计算的改进方法[J]. 重庆交通大学学报(自然科学版), 2023, 42(02):8-12+36.DENG X K, LI X B. Improved method of design position calculation of inclined bus saddle for space cable suspension bridge[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2023, 42(02):8-12+36. (in Chinese)
    [4] 沈锐利, 薛松领, 陈龙, 等. 自适应空间缆鞍座性能分析[J]. 桥梁建设, 2022, 52(01):26-32.SHEN R L, XUE S L, CHEN L, et al. Performance analysis of adaptive spatial cable saddle[J]. Bridge Construction, 2022, 52(01):26-32. (in Chinese)
    [5] 齐东春. 大跨径悬索桥主缆精细化计算研究[D]. 西南交通大学, 2012.QI D C. Research on fine calculation of main cables of large-span suspension bridges [D]. Southwest Jiaotong University, 2012. (in Chinese)
    [6] CHONG H, WANG B, WANG D, et al. Tribo-corrosion-fatigue behaviors of the parallel wires of main cable in the suspension bridge. Wear2024;548-549:205363.
    [7] ZHANG W, YANG C, WANG Z, et al. An analytical algorithm for reasonable central tower stiffness in the three-tower suspension bridge with unequal-length main spans. Engineering Structure2019;199:109595.
    [8] 白伦华, 沈锐利, 苗如松, 等. 箱梁与缆索承重桥梁理论2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1):43-52.BAI L H, SHEN R L, MIAO R S, et al. Research progress on box girder and cable supported bridge theory in 2020 [J] Journal of Civil and Environmental Engineering (Chinese and English), 2021, 43 (S1): 43-52. (in Chinese)
    [9] WANG L, SHEN R, ZHANG S, et al. Strand element analysis method for interaction between cable and saddle in suspension bridges. Engineering Structure2021;242:112283.
    [10] Cao H, Chen Y, Li J, et al. Static characteristics analysis of three-tower suspension bridges with central buckle using a simplified model. Engineering Structure2021;245:112916.
    [11] WANG L, SHEN R, WANG T, et al. A methodology for nonuniform slip analysis and evaluation of cable strands within saddle. Engineering Structure2024;303: 117551.
    [12] 武守信, 李小刚, 冯君. 悬索桥大直径嵌桩式重力锚碇摩擦/嵌固联合抗滑机制和设计方法[J/OL]. 土木与环境工程学报(中英文), 1-14[2024-11-25].WU S X, LI X G, FENG J. Friction/embedded joint anti sliding mechanism and design method for large-diameter embedded pile gravity anchorage of suspension bridge [J/OL] Journal of Civil and Environmental Engineering (Chinese and English), 1-14 [2014-11-25]. (in Chinese)
    [13] Cheng Z, Zhang Q, Bao Y, et al. Analytical models of frictional resistance between cable and saddle equipped with friction plates for multispan suspension bridges. Journal of Bridge Engineering2018;23(1):04017118.
    [14] 季申增. 悬索桥主缆与索鞍间侧向力及摩擦滑移特性分析[D]. 西南交通大学, 2017.JI S. Analysis of lateral force and friction slip characteristics between main cable and cable saddle of suspension bridge [D]. Southwest Jiaotong University, 2017. (in Chinese)
    [15] 王路, 沈锐利, 王昌将, 等. 悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J]. 土木工程学报, 2017(12):87-96.WANG L, SHEN R L, WANG C J, et al. Research on theoretical calculation methods and formulas of lateral force between main cable and cable saddle of suspension bridge[J]. Journal of Civil Engineering, 2017(12):87-96. (in Chinese)
    [16] 甘祥. 空间缆索悬索桥主索鞍构型与力学特性研究[D]. 西南交通大学, 2019.Gan X. Research on the main cable saddle configuration and mechanical characteristics of space cable suspension bridge [D]. Southwest Jiaotong University, 2019. (in Chinese)
    [17] JTG/T D65-05-2015. 公路悬索桥设计规范[S]. 北京: 人民交通出版社, 2015.JTG/T D65-05-2015. design specification for highway suspension bridges [S]. Beijing: People's Transportation Press, 2015. (in Chinese)
    [18] 沈锐利, 王路, 王昌将, 等. 悬索桥主缆与索鞍间侧向力分布模式的模型试验研究[J]. 土木工程学报, 2017(10):79-85.SHEN R L, WANG L, WANG C J, et al. Model experimental study on lateral force distribution pattern between main cable and cable saddle of suspension bridge[J]. Journal of Civil Engineering, 2017(10):79-85. (in Chinese)
    [19] Wang L, Tan Z, Bai L, et al. Sliced numerical model for lateral interaction of cable-saddle system considering sufficient wire-discretization. Journal of Constructional Steel Research. 2024; 219:108761.
    [20] 董皓, 单德山, 于伟栋, 等. 基于散索鞍转动位移的悬索桥主缆力长期监测[J/OL]. 工程科学与技术, 1-14[2024-11-25].DONG H, DAN D S, YU W D, et al. Long term monitoring of main cable force in suspension bridges based on the rotational displacement of cable saddles [J/OL] Engineering Science and Technology, 1-14 [2022-11-25]. (in Chinese)
    [21] 白伦华, 王路, 沈锐利. 悬索桥缆鞍系统侧向挤压作用的接触元法与计算公式[J/OL]. 工程力学, 1-12[2024-11-25].BAI L H, WANG L, SHEN R L. Contact element method and calculation formula for lateral compression of cable saddle system in suspension bridge [J/OL] Engineering Mechanics, 1-12 [2022-11-25]. (in Chinese)
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:83
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-11-25
  • 最后修改日期:2025-01-23
  • 录用日期:2025-01-25
文章二维码