铁路列车/桥梁共振与消振研究综述
DOI:
CSTR:
作者:
作者单位:

1.重庆大学 土木工程学院;2.重庆大学;3.广东省土木工程智能韧性结构重点实验室;4.北京交通大学 土木建筑工程学院

作者简介:

通讯作者:

中图分类号:

U446.3??????

基金项目:

国家自然科学(52478137), 广东省土木工程智能韧性结构重点实验室开放课题 (2023B1212010004),重庆市建设科技计划项目(城科字2023 第5-12 号)


Review on Resonance and Cancellation of Railway Train/Bridge
Author:
Affiliation:

1.Chongqing University;2.Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering;3.Beijing Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    共振会导致列车与桥梁结构振动过大,加剧桥梁轨道结构疲劳失稳,影响列车运行舒适与安全问题。如何在设计阶段有效消除共振,在服役阶段有效控制共振,是保障高速铁路交通健康持续发展的关键。本文旨在回顾和梳理铁路列车/桥梁共振与消振问题的研究进展,系统总结共振发生机理与规律,明确消振设计与共振控制方法。本文覆盖桥梁共振与消振基本理论、列车激励模型、不同结构形式桥梁的共振与消振问题、桥梁共振与消振的主要影响因素、桥梁共振控制与现场试验研究6个部分。研究表明:桥梁共振与消振条件受边界条件影响,但总体与简支梁工况重合或略有差异;桥梁跨群与列车编组构成典型的双周期性,当桥梁引起的列车共振速度与列车引起桥梁的共振速度一致时,会诱发车桥“双共振”;车桥耦合效应会减小桥梁的共振幅值,但在实际中的车桥耦合系统具有随机性,可能造成“随机共振”发生;对于简支梁,一阶模态主导共振位移响应,二阶模态对共振加速度影响较大,更高阶模态影响一般可忽略;对于连续梁,二阶模态对共振位移的贡献一般也较大,不能忽略;桥梁阻尼能有效减小桥梁的共振幅值,但亦会造成消振“泄露效应”;当桥跨长度L为1.5倍列车特征长度d时,可有效消除桥梁的第一阶共振,此为铁路桥梁最佳跨长设计准则;可通过设置桥梁频率下限、改变列车组构成等措施主动规避共振发生条件。大量实测结果表明,铁路桥梁共振以第一阶竖弯模态共振为主,其与运行列车速度和列车长度(即v/d)存在显著相关性。

    Abstract:

    Resonance can lead to excessive vibration of trains and bridge structures, exacerbating fatigue and instability in bridge-track structures, further affecting the comfort and safety of train operations. Effectively eliminating resonance during the design phase and controlling resonance during service are crucial for ensuring the healthy and sustainable development of high-speed railway transportation. This paper aims to review the research progress on resonance and cancellation issues of railway train/bridge, systematically summarize the mechanisms and laws of resonance occurrence, and clarify cancellation design and resonance control methods. The paper covers six parts: basic theory of bridge resonance and cancellation, train excitation models, resonance and cancellation issues of bridges of different types, major influencing factors of bridge resonance and cancellation, bridge resonance control and field experimental research. Research shows that the conditions for bridge resonance and cancellation are influenced by boundary conditions, but generally coincide with or slightly differ from those of simply supported beams. Bridge spans and train compositions form typical bi-periodicity, this potentially results into “dual resonance” when the bridge-induced train resonance speed is equal to the train-induced bridge resonance speed. The coupling effect between trains and bridges reduces the resonance amplitude of bridges, but the actual train-bridge coupling system is stochastic and may lead to “random resonance”. For simply supported beams, the first mode dominates the resonance displacement, while the second mode has a significant impact on resonance acceleration, and higher-order mode effects can generally be ignored. For continuous beams, the second mode also generally contributes significantly to resonance displacement and cannot be ignored. Damping in bridges can effectively reduce resonance amplitudes but may also cause “leaking effects” for cancellation. When the bridge span length L is 1.5 times the characteristic length d of the train, the first-order resonance of the bridge can be effectively eliminated, which serves as the optimal span design criterion for railway bridges. Resonance conditions can be actively avoided by setting lower frequency limits for bridges and changing train compositions. Results from extensive field tests indicate that the resonance of railway bridges is predominantly characterized by the first-order vertical bending mode. This resonance shows a significant correlation with the train speed and train length (i.e., v/d).

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-12
  • 最后修改日期:2025-02-14
  • 录用日期:2025-03-05
  • 在线发布日期:
  • 出版日期:
文章二维码