机器学习探究VUV/PS体系中UV185被忽视的有机物激发作用
DOI:
CSTR:
作者:
作者单位:

重庆大学 三峡库区生态环境教育部重点实验室

作者简介:

通讯作者:

中图分类号:

X131.2? ??????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)(52170025)


Machine learning investigates the overlooked organic excitation effects in the UV/PS system by UV185
Author:
Affiliation:

1.Key Laboratory of the Three Gorges Reservoir Region'2.'3.s Eco-Environment,Ministry of Education,Chongqing University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)(52170025)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    真空紫外过硫酸盐(VUV/PS)体系中更快速的污染物降解一直被认为是UV185高效激发H2O和PS的结果而忽略了UV185对污染物的直接激发,从而低估了 UV185在污染物降解方面的贡献。为此,本研究结合机器学习与DFT计算,从数据分析角度对VUV/PS体系中UV185的作用机理进行了探究。首先通过DFT计算获得了30种有机污染物的基态和激发态分子描述符作为输入参数,并利用随机森林模型将其分别与污染物在不同体系中的降解动力学常数和矿化率作为输出参数进行建模,通过观察不同输入参数下模型拟合度的变化对分子描述符进行筛选,保留与输出参数相关性高的描述符,最后通过Shapley加性解释方法(SHAP)分析各模型中贡献度最高的几种输入参数,进而对反应机理进行推测。分析结果表明,相比于UV体系,VUV体系中S1激发态描述符与亲核反应相关描述符的贡献度出现了明显提高,表明UV185是通过将污染物激发至反应活性更高的S1态,而后以促进光解和亲核反应的机制加快污染物的降解与矿化过程。

    Abstract:

    The accelerated degradation of pollutants in the vacuum ultraviolet/persulfate (VUV/PS) system is often attributed to the effective excitation of H2O and persulfate (PS) by UV185. However, the direct excitation of pollutants by UV185 has been largely overlooked, which may result in an underestimation of UV185's role in pollutant degradation. To address this gap, this study integrates machine learning and density functional theory (DFT) calculations to elucidate the mechanism of UV185 in the VUV/PS system through a data-driven approach. Initially, the ground-state and excited-state molecular descriptors for 30 types of organic pollutants were derived via DFT calculations and used as input parameters. Subsequently, a stochastic forest model was employed to predict the degradation kinetic constants and mineralization rates of pollutants in various systems, serving as output parameters. By evaluating the model's performance under different input conditions, molecular descriptors with high relevance to the output parameters were identified and retained. Ultimately, the most influential input parameters in each model were analyzed using the Shapley Additive Explanation (SHAP) method, which facilitated the speculation of the reaction mechanism. The findings revealed that, compared to the UV system, the contribution of S1 excited state descriptors and nucleophilic reaction-related descriptors in the VUV system was markedly enhanced, suggesting that UV185 promotes the transition of pollutants to a more reactive S1 state, thereby accelerating their degradation and mineralization through enhanced photolysis and nucleophilic reaction pathways.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-12
  • 最后修改日期:2025-02-11
  • 录用日期:2025-02-16
  • 在线发布日期:
  • 出版日期:
文章二维码