基于模型试验和改进CHMM的高拱坝安全状态评价
DOI:
CSTR:
作者:
作者单位:

1.重庆大学 土木工程学院;2.郑州大学 水利与交通学院

作者简介:

通讯作者:

中图分类号:

TV642.1;TV642.4

基金项目:

国家重点研发计划项目(2022YFC3004400);国家自然科学基金重点项目(52130901);泰山学者产业领军人才工程项目的项目(tscx202306104)


Model test and modified continuous hidden Markov model-based safety evaluation of high arch dam
Author:
Affiliation:

1.School of Civil Engineering,Chongqing University;2.School of Water Conservancy and Transportation Engineering,Zhengzhou University

Fund Project:

National Key Research and Development Program of China (No. 2022YFC3004400); National Natural Science Foundation of China (No. 52130901); the Program of Taishan Industry Leading Talent Project (No. tscx202306104)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高拱坝安全评估对保障高拱坝长久安全运行具有重要意义。连续隐马尔可夫模型(CHMM)机器学习算法具有强大的处理多源融合时序性连续数据、建立数据间复杂映射关系和实时准确评估能力,因而有实时准确评估高拱坝安全状态的巨大潜力,但是目前尚未开展基于CHMM多变量指标分析的高拱坝超载破坏全过程安全状态评价。因此,本文开展了高拱坝物理模型超载试验,监测拱坝破坏全过程的裂缝和变形时间序列,并构建了低噪、稳定的高质量CHMM数据集。随后,将CHMM应用于高拱坝安全评估中,并提出状态转移矩阵排序新规则,赋予状态标签意义,改进了CHMM的结果可读性。最终,根据CHMM给出最优状态序列对拱坝模型破坏全过程进行安全评估,并与高拱坝模型破坏过程对比验证。结果表明:基于CHMM高拱坝状态时间序列将高拱坝安全状态分为7个等级,并与变形和裂缝时序演变历程相吻合,进而提出了高拱坝失效历程特征安全度,将试验高拱坝失效历程分为类线性、非线性大变形、反拱效应作用和最终失稳四个阶段,对应超载安全度分别为2、6、10和14。本研究为高拱坝安全评价提供了新思路,对高拱坝安全预警具有参考意义。

    Abstract:

    The safety assessment is of great significance for ensuring long-term safe operation of high arch dams. The machine learning algorithm of Continuous Hidden Markov Model (CHMM) has strong capabilities in processing multi-sourced time sequential continuous data, establishing relationship between complex data, and real-time accurate evaluation. Therefore, it has great applicable potential in high arch dam safety evaluation. However, the whole-process safety evaluation of overloading failure of high arch dams via CHMM-based multivariate indices analysis has not been carried out yet. Therefore, this paper carried out an overloading test on a physical model of a high arch dam, monitored the time series of cracks and deformations throughout the dam's failure process, and constructed a high-quality CHMM dataset with low noise and stability. Subsequently, CHMM was applied to the safety assessment of high arch dams, and a new rule for state transfer matrix ordering was proposed to give meaning to the state labels, which improved the readability of the results of CHMM. Finally, the whole-process safety variation of arch dam model was evaluated by the CHMM optimized state sequence, and validated with observed results. The results indicated that CHMM-based state sequence classified the safety status of tested high arch dam into seven levels, which coincide with the time-sequential evolution of deformation and crack, and further proposed the featuring overloading safety. The failure process of tested high arch dam was categorized into quasi-linear, nonlinear of large deformation, arching effect action and complete failure stages with respective overloading safety degrees of 2, 6, 10 and 14. This study provides the new insight into safety evaluation of high arch dam and makes reference for early-warning of high arch dam.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-11
  • 最后修改日期:2025-04-23
  • 录用日期:2025-06-01
  • 在线发布日期:
  • 出版日期:
文章二维码