碳纤维锚定铁锰双金属电催化剂构筑及噻虫嗪高效降解机制
DOI:
CSTR:
作者:
作者单位:

1.南京大学 环境学院;2.南京师范大学 环境学院

作者简介:

通讯作者:

中图分类号:

基金项目:

太湖水污染治理专项资金(第十期)科研课题(TH2016202)


Construction of carbon fiber-anchored ferromanganese bimetallic electrocatalyst and efficient degradation mechanism of thiamethoxam
Author:
Affiliation:

1.School of the Environment,Nanjing University;2.School of the Environment,Nanjing Normal University

Fund Project:

Lake Tai Water Pollution Treatment Special Funds (Tenth Phase) Scientific Research Project (TH2016202)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    双金属电催化剂能发挥协同作用高效催化降解新烟碱类杀虫剂,但其应用受限于金属纳米颗粒团聚导致的活性位点减少。利用静电纺丝将金属物种锚定于纳米纤维,进一步通过热处理实现金属氧化物与碳纤维的原位紧密结合,成功构建碳纤维锚定铁锰双金属电催化剂(FM@N-CNF),其中金属氧化物平均粒径仅为6 nm。电化学表征测试结果证实FM@N-CNF具有优于单金属的电化学活性表面积和电子传输能力。以FM@N-CNF作为阴极材料,在-0.5 V vs. SCE电压下,90 min内可完全降解噻虫嗪,10次循环降解率均高于80%。在污染物浓度5 ~ 100 ppm、pH值3 ~ 11和常规无机盐共存条件下,FM@N-CNF具有良好耐受性。淬灭实验及电子顺磁共振波谱结果一致证明主要活性氧物种为1O2。液相色谱-质谱联用分析表明噻虫嗪降解过程主要包括羧基化和羰基化反应。

    Abstract:

    Bimetallic electrocatalysts can leverage synergistic effects to efficiently catalyze the degradation of neonicotinoid pesticides, but their application is constrained by diminished active sites due to the aggregation of metal nanoparticles. By anchoring metallic species onto nanofibers through electrospinning and achieving in-situ integration of metal oxides with carbon fibers via thermal treatment, we successfully constructed an iron-manganese bimetallic electrocatalyst (FM@N-CNF), featuring uniformly dispersed metal oxides with an average particle size of 6 nm. Electrochemical characterization confirmed that FM@N-CNF exhibits superior electrochemical active surface area and electron transfer capability compared to monometallic catalysts. When employed as a cathode material at -0.5 V vs. SCE, FM@N-CNF achieved complete degradation of thiamethoxam within 90 minutes and maintained degradation rates above 80% over 10 consecutive cycles. The catalyst demonstrated excellent environmental adaptability under various conditions, including pollutant concentrations (5 ~ 100 ppm), pH (3 ~ 11), and coexistence of common inorganic salts. Quenching experiments in combination with electron paramagnetic resonance (EPR) spectroscopy consistently identified singlet oxygen (1O?) as the predominant reactive oxygen species. Liquid chromatography-mass spectrometry analysis revealed that the degradation pathway of thiamethoxam primarily involves carboxylation and carbonyl addition reactions.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-19
  • 最后修改日期:2025-03-25
  • 录用日期:2025-05-16
  • 在线发布日期:
  • 出版日期:
文章二维码