基于可掘性解耦的盾构掘进参数阈值动态控制方法
DOI:
CSTR:
作者:
作者单位:

1.中交隧道工程局有限公司;2.中交一公局集团有限公司;3.江苏省地质局第一地质大队;4.江苏省城市地下空间开发利用与安全防护工程研究中心;5.南京工业大学交通运输工程学院

作者简介:

通讯作者:

中图分类号:

TB16;TU601;TU94

基金项目:

国家自然科学基金项目(52208393);爆炸冲击防灾减灾全国重点实验室资助(LGD-SKL-202208);中交隧道工程局有限公司2022年度科技研发项目(2022-01);中交集团2022年重点研发项目(2022-24)


A dynamic control method for shield tunneling parameter thresholds based on decoupling analysis of boreability
Author:
Affiliation:

1.CCCC Tunnel Engineering Company Limited;2.CCCC First Highway Engineering Group Co., Ltd.;3.The First Geological Brigade of Jiangsu Geological Bureau;4.Jiangsu Province Engineering Research Center of urban underground space development, utilization and safety protection;5.College of Transportation Science &6.Engineering, Nanjing Tech University

Fund Project:

National Natural Science Foundation of China (No.52208393); Funded by State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact (No.LGD-SKL-202208); Annual R&D Projects of CCCC Tunnel Engineering Company Limited in 2022 (No.2022-01); Key Research and Development Projects of CCCC in 2022 (No.2022-24)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低因刀盘扭矩波动过大导致的设备健康风险,以组合双因素方法解耦地质参数、掘进参数和岩体可掘性之间的网状影响机制,在掘进效率控制律约束下显式求解掘进参数动态控制策略,实现对刀盘扭矩超载和波动的动态抑制。研究结果表明:组合双因素方法能够学习到可掘性控制因素之间差异影响机制的低维特征,多分组单调性分析和椭圆锥包络面模型能够解释各因素对可掘性的影响机制,椭圆锥包络面方程在判定刀盘扭矩过载风险时兼具地层普适和解析清晰的优点;基于可掘性解耦的盾构掘进参数阈值动态控制方法,能够为针对掘进参数波动和盾构关键元件损坏的风险管控提供显式的决策指令和快速响应指令的控制链:其指令层的输出具备可解释性——椭圆锥包络面方程二维投影在掘进效率控制律约束下可转化为以刀盘扭矩阈值为控制目标的掘进速率动态阈值,其应用层控制逻辑为先验条件下的单因素调控,能够快速响应动态指令并增强掘进参数稳态。

    Abstract:

    In order to reduce the health risk of equipment due to excessive cutterhead torque fluctuation, the overload and fluctuation of cutterhead torque need to be dynamically suppressed. The dynamic control thresholds of tunneling parameters under the constraint of tunneling efficiency control law is explicitly derived to reveal the suppression strategy on the basis of decoupling the network influence mechanism among geological parameters, tunneling parameters and rock mass boreability through the combinational two-factor analysis. The results show that: the combinational two-factor analysis can learn the low-dimensional characteristics of the mechanism of differential interaction within the rock mass boreability control factors, the multigroup monotonicity analysis and the elliptic conic envelope model can explain the influence mechanism of the factors on boreability. The elliptic conic envelope model can accurately determine the overload risk of cutterhead torque in the form of analytical model in multiple stratum. In the risk management and control task against the tunneling parameters fluctuation and the key components damage of shield, the dynamic control method for shield tunneling parameter thresholds based on decoupling analysis of boreability can provide explicit decision instructions and the control chain of fast command response. The output of the instruction layer of the control method is interpretable for the two-dimensional projection of the elliptic conic envelope equation can be transformed into a dynamic threshold model of tunneling speed with the cutterhead torque thresholds as the control goal under the constraint of tunneling efficiency control law. The command logic of the application layer is prior-determined single factor control, which can not only respond to dynamic instructions quickly, but also enhance the steady state of tunneling parameters.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-17
  • 最后修改日期:2025-04-26
  • 录用日期:2025-06-01
  • 在线发布日期:
  • 出版日期:
文章二维码