住宅空调能耗分形分析及短期预测模型优化
DOI:
CSTR:
作者:
作者单位:

重庆大学土木工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

重庆市研究生科研创新项目(CYB240070);中央高校优秀青年团队基本科研基金(No.2024CDJYXTD-003);中央高校基本基金(2023CDJKYJH102)


Residential Air Conditioning Energy Fractal Analysis and Short-Term Prediction Model Optimization
Author:
Affiliation:

School of Civil Engineering Chongqing University

Fund Project:

graduate research and innovation foundation of Chongqing, China(Grant No.CYB240070); the Central University Basic Research Fund for Outstanding Young Teams (No.2024CDJYXTD-003);the Central University Basic Research Fund (2023CDJKYJH102)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    住宅建筑的空调系统能耗受用户行为多样性影响,并且传统统计特征难以在数据质量不足的情况下准确识别使用模式差异,使得短期能耗预测模型难以平衡准确性和计算成本。然而,分形理论通过量化时间序列的非线性与多尺度复杂度,为识别用户行为差异提供了独特优势。本研究提出了一种结合分形分析与数据驱动方法的短期能耗预测框架,通过分形特征划分用户为低、中、高复杂度群体,从滑动窗口、数据量和特征选择三方面精选输入数据和特征,规避噪声干扰,同时保留关键模式信息,,以兼顾预测精度和计算成本。基于夏季住宅空调运行数据,研究发现滑动窗口大小与复杂度负相关:低复杂度群体倾向较长窗口,中、高复杂度群体需较短窗口。数据量需求上,低、中复杂需求较少,高复杂度群体需更全面数据。特征选择中,低、中复杂度群体依赖大幅波动特征,高复杂度群体依赖小幅波动特征。基于2000户样本验证,模型MAPE为9.82%,CV-RMSE为11.40%,相较于逐户预测模型,误差降低41.52%并节省大量计算时间。本研究通过分形特征与K-means聚类及LSTM结合,克服传统方法局限,为住宅短期能耗预测提供高效方案。

    Abstract:

    The energy consumption of air conditioning systems in residential buildings is significantly influenced by the diversity of user behaviors. Traditional statistical features struggle to accurately discern differences in usage patterns under conditions of inadequate data quality, rendering short-term energy consumption prediction models challenged in balancing accuracy and computational cost. Fractal theory, however, offers a distinct advantage in addressing these challenges by quantifying the nonlinear and multi-scale complexity of time series data, thereby enabling the differentiation of user behavior patterns. This study proposes a short-term energy consumption prediction framework that integrates fractal analysis with a data-driven approach. By employing fractal features, users are categorized into low, medium, and high complexity groups, with input data and features optimized across sliding window size, data volume, and feature selection to mitigate noise interference, preserve key patterns, and balance prediction accuracy with computational efficiency.. Based on summer residential air conditioning data, the study finds that sliding window size is negatively correlated with complexity: low-complexity groups prefer longer windows, while medium- and high-complexity groups require shorter ones. For data volume, low- and medium-complexity groups need less, whereas high-complexity groups demand more comprehensive data. In feature selection, low- and medium-complexity groups rely on large-fluctuation features, while high-complexity groups depend on small-fluctuation features. Validation with a 2000-household sample demonstrates a MAPE of 9.82% and a CV-RMSE of 11.40%, achieving a 41.52% error reduction compared to per-household prediction models while significantly saving computational time. By combining fractal features with K-means clustering and LSTM networks, this study overcomes limitations of conventional approaches, offering an efficient solution for short-term energy consumption prediction in residential settings.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-22
  • 最后修改日期:2025-04-30
  • 录用日期:2025-06-01
  • 在线发布日期:
  • 出版日期:
文章二维码