考虑饱和度变化影响的黏土防渗垫层中污染物运移规律研究
DOI:
CSTR:
作者:
作者单位:

1.沈阳建筑大学土木工程学院;2.北京工业大学 城市与工程安全减灾教育部重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52208356);辽宁省科技厅项目(2024-MSLH-388);辽宁省教育厅项目(LJ242410153045);北京工业大学教育部重点实验室项目(2025B05)


Study on Contaminant Transport Mechanisms in Clay Liners under Varying Saturation Conditions
Author:
Affiliation:

1.School of Civil Engineering, Shenyang Jianzhi University;2.Key Laboratory of Urban and Engineering Safety and Disaster Reduction, Ministry of Education, Beijing Institute of Technology

Fund Project:

National Natural Science Foundation of China (No. 52208356); Project of Liaoning Provincial Department of Science and Technology (No. 2024-MSLH-388);Project of Liaoning Provincial Department of Science and Technology (No. LJ242410153045); Key Laboratory Project of the Ministry of Education at Beijing University of Technology (No. 2025B05)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土体饱和度作为控制污染物运移速率的关键因素,直接影响黏土垫层的长期防渗性能及污染物阻隔效能。为阐明垃圾填埋场黏土垫层的饱和度变化对污染物运移规律的影响,本文基于质量和能量守恒方程,结合广义达西定律,并考虑土体输运性质和物理特性的动态变化,分别建立了非饱和土的固结方程、孔隙水的流动控制方程、热传导控制方程和污染物运移控制方程,共同构成了非饱和土中污染物运移的模型;使用有限元平台COMSOL Multiphysics对所建模型进行数值求解,通过算例验证该模型的合理性;进一步分析了饱和度变化对孔隙流体压力、污染物浓度、土体沉降量随时间变化的规律。研究结果表明:土体孔隙流体压力、溶质运移和沉降过程均呈现显著的时间效应与饱和度依赖性。孔隙流体压力在固结过程中由浅层负压向整体负压演化,高饱和度(Sr>0.85)时的孔隙流体压力较中低饱和度提高1-4kPa;溶质运移速率随饱和度升高增加10%-25%,其影响随深度呈非线性衰减关系;土体沉降呈现先增后减的非线性特征,在1年左右达到沉降峰值,高饱和度(Sr >0.85)的最大沉降量较中低饱和度增加5%-10%。

    Abstract:

    As a critical factor governing pollutant migration rates, soil saturation directly influences the long-term impermeability and contaminant retention efficacy of clay liners in landfills. To elucidate the impact of saturation-dependent mechanisms of pollutant transport in practical clay liners, a dynamic coupled model for contaminant migration in unsaturated soils was developed in this study. Based on mass and energy conservation principles, the generalized Darcy’s law was integrated into the framework, while dynamic variations in soil transport properties and physical characteristics were rigorously accounted. The governing equations for unsaturated soil consolidation, pore water flow, heat transfer, and contaminant transport were systematically formulated to establish the multi-physics model. Numerical simulations of the constructed model were conducted using the finite element analysis platform COMSOL Multiphysics, with case studies implemented to validate the model's rationality in civil engineering scenarios. Further analysis was conducted on the temporal evolution patterns of pore fluid pressure, contaminant concentration, and soil settlement under variations in saturation. Results demonstrate that pore fluid pressure transitions from shallow negative pressure to global negative pressure during consolidation, with 1–4 kPa higher pressure values being observed under high-saturation conditions (Sr > 0.85) compared to medium-low saturation cases; Solute migration rates were found to increase by 10%–25% with elevated saturation, exhibiting nonlinear attenuation with depth; Soil settlement, characterized by a nonlinear trend, peaked at approximately one year, where 5%–10% greater maximum settlement was recorded in high-saturation scenarios (Sr > 0.85) than in low-saturation cases.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-14
  • 最后修改日期:2025-06-05
  • 录用日期:2025-07-17
  • 在线发布日期:
  • 出版日期:
文章二维码