基于GA优化的CNN-BiLSTM-Attention箱梁离散点温度预测
DOI:
CSTR:
作者:
作者单位:

西南交通大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51778532)


Keywords: Temperature Prediction in Box Girders; Genetic Algorithm (GA); CNN-BiLSTM-Attention; Meteorological characteristics; Model evaluation; Hyperparameter Optimization
Author:
Affiliation:

Southwest Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    混凝土箱梁桥长期受非均匀温度场作用,易因温度应力诱发裂缝与变形,严重威胁结构安全性与耐久性,而精准的温度场预测是实时监测、损伤预警与防控的关键基础。为解决多气象特征下离散点温度预测精度不足的问题,本研究提出一种基于遗传算法(GA)优化的CNN-BiLSTM-Attention时序模型:通过双向长短时记忆网络(BiLSTM)捕捉时间序列的正逆向依赖关系,结合卷积神经网络(CNN)提取局部空间特征,并引入自注意力机制(Attention)动态分配气象参数的权重,强化关键特征对温度变化的敏感性;同时,利用GA优化模型超参数(隐藏单元数、学习率等),以提升预测稳定性与泛化能力。基于南充嘉陵江特大桥实测数据的验证结果表明,该模型在短期(S1测段)与长期(S2测段)预测中均显著优于传统模型,RMSE分别低至0.178和0.129,决定系数R2接近0.99,较LSTM、BiLSTM等基线模型误差降低20%以上,且对温度峰值的捕捉能力显著增强。研究证明,融合时空特征与动态权重分配的混合模型能有效解析复杂气象耦合机制,为桥梁结构健康监测提供高精度温度场预测工具,对提升基础设施服役寿命与安全运维水平具有重要工程意义。

    Abstract:

    Concrete box-girder bridges subjected to non-uniform temperature fields are prone to thermal stress-induced cracks and deformation, which seriously threaten structural safety and durability. Accurate prediction of the temperature field serves as the critical foundation for real-time monitoring, damage early warning, and preventive mitigation strategies. To address the insufficient accuracy of discrete-point temperature predictions under multi-factor meteorological features, this study proposes a GA-optimized CNN-BiLSTM-Attention temporal model. The model integrated Bidirectional Long Short-Term Memory (BiLSTM) networks to capture bidirectional temporal dependencies in time-series data, and integrated Convolutional Neural Networks (CNN) to extract localized spatial features from time-series data, while further incorporating a self-attention mechanisms to dynamically assign weights to meteorological parameters, thereby enhancing sensitivity to critical features driving temperature variations. Concurrently, GA is employed to optimizes hyperparameters ( the number of hidden units, learning rate, etc.) to improve prediction stability and generalization capability. Validation results based on field monitoring data from Nanchong Jialing River Bridge demonstrated that the model's superior performance in both short-term (S1 segment) and long-term (S2 segment) predictions, achieving RMSE values as low as 0.178 and 0.129 respectively, with the coefficient of determination (R2) approaching 0.99. Compared to baseline models (e.g.,LSTM, BiLSTM), the error reduction exceeds 20%, while its capability to capture temperature peaks exhibited substantial enhancement. This research validated that the hybrid model integrating spatiotemporal feature fusion and dynamic weight allocation effectively could resolve complex meteorological coupling mechanisms, while providing a high-precision temperature field prediction tool for bridge structural health monitoring. This advancement possessed significant engineering implications for enhancing infrastructure service life and advancing safety-oriented operation and maintenance practices.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-14
  • 最后修改日期:2025-05-23
  • 录用日期:2025-07-17
  • 在线发布日期:
  • 出版日期:
文章二维码