摘要
磁性混(絮)凝剂因其混凝效果好、磁响应性强、固液分离效率高等优点在水处理领域受到广泛关注。总结近年来磁性混(絮)凝剂在水处理中的应用进展,详细介绍磁性混(絮)凝剂在处理浊度、重金属废水、染料废水、含藻废水、含油废水和其他类型废水等方面的研究,发现磁性混(絮)凝剂在各类水处理中均表现出较大的应用潜力。针对磁性混(絮)凝剂应用研究中的瓶颈问题,从材料选择、性质分析、适应性、絮体分析、安全风险5个方面对磁性混(絮)凝剂未来的研究趋势进行分析与展望。
随着现代化进程的不断推进,人民对水环境质量的要求日益提高,对水处理工艺的要求也越来越严格。水处理过程中的主流工艺包括混凝、沉淀、过滤、消毒等,其中,混凝技术是水处理厂和污水处理厂中最常见的工艺之一,被认为是一种简单、经济、可升级的技
磁混凝通过向传统的混凝过程中引入磁性颗粒(通常为Fe3O4颗粒),使得无机混凝剂(聚
磁性混(絮)凝剂是传统混(絮)凝剂与功能化磁性颗粒材料结合而制备出的复合型材料,是实现磁混凝中引入磁性颗粒的另一新的方式。与之前的引入方式相比,磁性混(絮)凝剂的应用投加更方便、沉降分离效果更优
由于病毒或细菌等污染物会附着在悬浮固体上,水的浊度水平越高,对人类的健康风险越

图1 磁絮凝实验装置示
Fig. 1 Schematic diagram of the magnetic flocculationexperimental devic
Ding
冶金、电镀、电池制造等工业企业快速发展,将大量含重金属离子或重金属化合物的废水排入自然水体,对生态环境造成严重破

图2 有机絮凝剂吸附金属离子示意
Fig. 2 Schematic diagram of the adsorption of metal ions onto the organic flocculan
随着工业时代的飞速发展,工业生产需求不断增加,工业染料产量越来越多,随之而来的印染工业废水问题也越来越严
湖泊与水库的富营养化使得水中的藻类等浮游生物大量生长、过度繁殖,导致水质恶化,而微藻还被视为生物燃料生产的潜在替代原
由于石油开采和加工、食品工业和机械加工行业的快速发展,含油废水进入到水生态环境系统中,对水体环境和生物造成极大危

图3 回收的M-DMEA的粒
Fig. 3 Particle size of the recycled M-DME
除上述常见的磁性混(絮)凝剂的应用领域外,近年来,磁性混(絮)凝剂还被应用于其他类型污染物的去除中,包括抗生素、残留药物、微塑料等(见
磁性混(絮)凝剂在浊度、重金属、染料等污染物处理的应用研究中表现出了去除率高、沉降速度快、易回收、可重复利用等优势,具有良好的发展前景。
目前,磁性混(絮)凝剂的制备一般是在传统混(絮)凝剂的基础上复合磁性颗粒材料进行的。为保证高的絮凝效率,磁混凝中的磁核粒径一般不应大于10 μm,制备磁性混凝剂选取的磁核主要采用纳米Fe3O4,还可以使用钡铁氧化体等其他磁性颗
目前,关于磁性混(絮)凝剂的研究中,大多都是定性分析,而非定量分析。磁性混(絮)凝剂研究的一大问题就是磁性混(絮)凝剂自身的结构特征分析困难。混(絮)凝剂的短程和长程结构都会影响混(絮)凝剂与目标污染物的相互作用。不同类型的传统絮(混)凝剂与磁性颗粒的复合过程中均存在各种相互作用,包括共价键、静电相互作用、范德华力、电磁力和这些相互作用中涉及的高特异性力等,这些相互作用可能通过不同的机制途径复
水的不同特性将影响磁性混(絮)凝剂的工作条件,从而影响其性能及磁混凝过程的效
混凝机理的分析研究必须考虑混凝过程中形成的絮体的特性,包括絮凝物的大小、分形结构、再生能力和沉降速率等,而这些性质可以通过图像分析或光散射技术结合分形理论进行研
A∝ | (1) |
I∝ | (2) |
式中:A为絮体结构的投影面积;l为特征长度;D2为二维分形维数;I为光强;Q为絮体的散射矢量;DF为三维分形维数,即质量分形维数。
目前分形维数在传统混(絮)凝剂的特性分析中应用较多,但在磁性混(絮)凝剂的特性分析中还不多见。
对近年来磁性混(絮)凝剂在水处理领域的应用研究进行了综述,包括浊度、重金属、染料、微藻、油质、其他类型等方面。不同专题显示磁性混(絮)凝剂的不同应用。根据磁性混(絮)凝剂在水处理中的应用研究状况对研究中存在的问题进行梳理和分析,从磁性混(絮)凝剂的材料选择、性质分析、适应性、絮体特性、安全风险等方面对磁性混(絮)凝剂的未来研究趋势进行展望,以期为磁性混凝剂的研发和应用提供一定理论依据。
参考文献
BRATBY J. Coagulation and flocculation in water and wastewater treatment [M]. Transactions of the International Astronomical Union, 2015. [百度学术]
WANG J P, YUAN S J, WANG Y, et al. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties [J]. Water Research, 2013, 47(8): 2643-2648. [百度学术]
KOOHESTANIAN A, HOSSEINI M, ABBASIAN Z. The separation method for removing of colloidal particles from raw water [J]. American-Eurasian Journal of Agricultural & Environmental Sciences, 2008, 4(2): 266-273. [百度学术]
STUMM W, MORGAN J J. Chemical aspects of coagulation [J]. Journal-American Water Works Association, 1962, 54(8): 971-994. [百度学术]
STUMM W, O'MELIA C R. Stoichiometry of coagulation [J]. Journal-American Water Works Association, 1968, 60(5): 514-539. [百度学术]
LI Y R, WANG J, ZHAO Y, et al. Research on magnetic seeding flocculation for arsenic removal by superconducting magnetic separation [J]. Separation and Purification Technology, 2010, 73(2): 264-270. [百度学术]
LV M, LI D Y, ZHANG Z H, et al. Magnetic seeding coagulation: Effect of Al species and magnetic particles on coagulation efficiency, residual Al, and floc properties [J]. Chemosphere, 2021, 268: 129363. [百度学术]
RITIGALA T, DEMISSIE H, CHEN Y L, et al. Optimized pre-treatment of high strength food waste digestate by high content aluminum-nanocluster based magnetic coagulation [J]. Journal of Environmental Sciences, 2021, 104: 430-443. [百度学术]
WAN T J, SHEN S M, SIAO S H, et al. Using magnetic seeds to improve the aggregation and precipitation of nanoparticles from backside grinding wastewater [J]. Water Research, 2011, 45(19): 6301-6307. [百度学术]
李嘉琳, 王照福, 赵博, 等. 复合磁性絮凝剂在水处理中的研究现状及发展方向[J]. 化学研究与应用, 2017, 29(9): 1274-1281. [百度学术]
LI J L, WANG Z F, ZHAO B, et al. Research status and development direction of composite magnetic flocculant in water treatment [J]. Chemical Research and Application, 2017, 29(9): 1274-1281. (in Chinese) [百度学术]
ZHANG M, XIAO F, WANG D S, et al. Comparison of novel magnetic polyaluminum chlorides involved coagulation with traditional magnetic seeding coagulation: Coagulant characteristics, treating effects, magnetic sedimentation efficiency and floc properties [J]. Separation and Purification Technology, 2017, 182: 118-127. [百度学术]
MANN A G, TAM C C, HIGGINS C D, et al. The association between drinking water turbidity and gastrointestinal illness: A systematic review [J]. BMC Public Health, 2007, 7: 256. [百度学术]
WANG C, WANG Y J, OUYANG Z Z, et al. Preparation and characterization of polymer-coated Fe3O4 magnetic flocculant [J]. Separation Science and Technology, 2018, 53(5): 814-822. [百度学术]
ZHOU Z, SHAN A Q, ZHAO Y X. Synthesis of a novel magnetic polyacrylamide coagulant and its application in wastewater purification [J]. Water Science and Technology, 2017, 75(3/4): 581-586. [百度学术]
SANTOS T R T, SILVA M F, NISHI L, et al. Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment [J]. Environmental Science and Pollution Research, 2016, 23(8): 7692-7700. [百度学术]
MA J Y, FU X, JIANG L Y, et al. Magnetic flocculants synthesized by Fe3O4 coated with cationic polyacrylamide for high turbid water flocculation [J]. Environmental Science and Pollution Research, 2018, 25(26): 25955-25966. [百度学术]
李建军, 朱金波, 李蒙蒙, 等. 磁性絮凝剂的原位共沉淀合成及其在煤泥水处理中的应用[J]. 北京工业大学学报, 2014, 40(11): 1712-1716. [百度学术]
LI J J, ZHU J B, LI M M, et al. In-situ co-precipitation synthesis and application for slimewater treatment of magnetic flocculent [J]. Journal of Beijing University of Technology, 2014, 40(11): 1712-1716. (in Chinese) [百度学术]
王东升, 张明, 肖峰. 磁混凝在水与废水处理领域的应用[J]. 环境工程学报, 2012, 6(3): 705-713. [百度学术]
WANG D S, ZHANG M, XIAO F. Application of magnetic coagulation in water and wastewater treatment [J]. Chinese Journal of Environmental Engineering, 2012, 6(3): 705-713. (in Chinese) [百度学术]
赵明慧, 周集体, 邵冬海. 磁化学技术在水处理中的应用[J]. 环境污染治理技术与设备, 2003(4): 79-84. [百度学术]
ZHAO M H, ZHOU J T, SHAO D H. Applications of magnetic separation in wastewater treatment [J]. Techniques and Equipment for Environmental Pollution Control, 2003(4): 79-84. (in Chinese) [百度学术]
郑利兵, 佟娟, 魏源送, 等. 磁分离技术在水处理中的研究与应用进展[J]. 环境科学学报, 2016, 36(9): 3103-3117. [百度学术]
ZHENG L B, TONG J, WEI Y S, et al. The progress of magnetic separation technology in water treatment [J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3103-3117. (in Chinese) [百度学术]
DING C J, XIE A J, YAN Z, et al. Treatment of water-based ink wastewater by a novel magnetic flocculant of boron-containing polysilicic acid ferric and zinc sulfate [J]. Journal of Water Process Engineering, 2021, 40: 101899. [百度学术]
罗米娜, 李环, 陈馥, 等. 1种新型磁性絮凝剂的制备及性能评价[J]. 水处理技术, 2019, 45(12): 53-56. [百度学术]
LUO M N, LI H, CHEN F, et al. Preparation and performance evaluation of a new type magnetic flocculant [J]. Technology of Water Treatment, 2019, 45(12): 53-56. (in Chinese) [百度学术]
朱四琛, 孙永军, 孙文全, 等. 絮凝法在重金属废水处理中的研究进展与应用[J]. 净水技术, 2018, 37(11): 40-50. [百度学术]
ZHU S C, SUN Y J, SUN W Q, et al. Research progress and application of flocculation process in heavy metal wastewater treatment [J]. Water Purification Technology, 2018, 37(11): 40-50. (in Chinese) [百度学术]
ZHANG C L, ZHANG M Y, CHANG Q. Preparation of mercaptoacetyl chitosan and its removal performance of copper ion and turbidity [J]. Desalination and Water Treatment, 2015, 53(7): 1909-1916. [百度学术]
YOU L J, SONG L D, LU F F, et al. Fabrication of a copolymer flocculant and application for Cr(VI) removal [J]. Polymer Engineering & Science, 2016, 56(11): 1213-1220. [百度学术]
WANG G, CHANG Q, HAN X T, et al. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation [J]. Journal of Hazardous Materials, 2013, 248/249: 115-121. [百度学术]
YU Y Y, SUN Y J, ZHOU J, et al. Preparation and characterization of high-efficiency magnetic heavy metal capture flocculants [J]. Water, 2021, 13(13): 1732. [百度学术]
SUN Y J, YU Y Y, ZHENG X, et al. Magnetic flocculation of Cu(II) wastewater by chitosan-based magnetic composite flocculants with recyclable properties [J]. Carbohydrate Polymers, 2021, 261: 117891. [百度学术]
郭振华, 刘中桃, 沈伯雄, 等. MBFX-8/磁性Fe3O4@CMC复合絮凝剂的制备及对C
GUO Z H, LIU Z T, SHEN B X, et al. Fabrication of MBFX-8/magnetic Fe3O4@CMC composite flocculant and its removal towards C
LIU B Z, CHEN X, ZHENG H L, et al. Rapid and efficient removal of heavy metal and cationic dye by carboxylate-rich magnetic chitosan flocculants: Role of ionic groups [J]. Carbohydrate Polymers, 2018, 181: 327-336. [百度学术]
FOSSO-KANKEU E, MITTAL H, WAANDERS F, et al. Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents [J]. International Journal of Environmental Science and Technology, 2016, 13(2): 711-724. [百度学术]
刘俊逸, 黄青, 李杰, 等. 印染工业废水处理技术的研究进展[J]. 水处理技术, 2021, 47(3): 1-6. [百度学术]
LIU J Y, HUANG Q, LI J, et al. Research progress on the treatment technologies of industrial printing and dyeing wastewater [J]. Technology of Water Treatment, 2021, 47(3): 1-6. (in Chinese) [百度学术]
LIU X H, YANG Y L, SHI X X, et al. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser [J]. Journal of Hazardous Materials, 2015, 283: 267-275. [百度学术]
GUO K Y, GAO B Y, YUE Q Y, et al. Characterization and performance of a novel lignin-based flocculant for the treatment of dye wastewater [J]. International Biodeterioration & Biodegradation, 2018, 133: 99-107. [百度学术]
RENAULT F, SANCEY B, BADOT P M, et al. Chitosan for coagulation/flocculation processes - An eco-friendly approach [J]. European Polymer Journal, 2009, 45(5): 1337-1348. [百度学术]
郑怀礼, 余祉双, 赵瑞, 等. 阴离子嵌段磁性混凝剂去除低浓度亚甲基蓝[J]. 中国环境科学, 2021, 41(8): 3567-3575. [百度学术]
ZHENG H L, YU Z S, ZHAO R, et al. Removal of low concentration methylene blue by anionic block magnetic coagulant [J]. China Environmental Science, 2021, 41(8): 3567-3575. (in Chinese) [百度学术]
KADAM A A, LEE D S. Glutaraldehyde cross-linked magnetic chitosan nanocomposites: Reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes [J]. Bioresource Technology, 2015, 193: 563-567. [百度学术]
RECK I M, BAPTISTA A T A, PAIXÃO R M, et al. Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes [J]. Environmental Science and Pollution Research International, 2020, 27(11): 12192-12201. [百度学术]
MATEUS G A P, SANTOS T R TDOS, SANCHES I S, et al. Evaluation of a magnetic coagulant based on Fe3O4 nanoparticles and Moringa oleifera extract on tartrazine removal: Coagulation-adsorption and kinetics studies [J]. Environmental Technology, 2020, 41(13): 1648-1663. [百度学术]
KRISTIANTO H, TANUARTO M Y, PRASETYO S, et al. Magnetically assisted coagulation using iron oxide nanoparticles-Leucaena leucocephala seeds’ extract to treat synthetic Congo red wastewater [J]. International Journal of Environmental Science and Technology, 2020, 17(7): 3561-3570. [百度学术]
孙永军, 任梦娇, 徐炎华, 等. 光聚合壳聚糖基絮凝剂及其絮凝性能[J]. 土木建筑与环境工程, 2016, 38(3): 58-64. [百度学术]
SUN Y J, REN M J, XU Y H, et al. UV induced synthesis of chitosan flocculants and its flocculation performance [J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(3): 58-64. (in Chinese) [百度学术]
BRAR A, KUMAR M, SONI T, et al. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review [J]. Bioresource Technology, 2021, 339: 125597. [百度学术]
LI S X, HU T Y, XU Y Z, et al. A review on flocculation as an efficient method to harvest energy microalgae: Mechanisms, performances, influencing factors and perspectives [J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110005. [百度学术]
NGUYEN L H, VAN H T, QUAN D H, et al. Magnetic nanocomposite derived from Nopal cactus biopolymer and magnetic nanoparticles used for the microalgae flocculation of aqueous solution [J]. BioResources, 2021, 16(2): 3469-3493. [百度学术]
BAREKATI-GOUDARZI M, REZA MEHRNIA M, POURASGHARIAN ROUDSARI F, et al. Rapid separation of microalga Chlorella vulgaris using magnetic chitosan: Process optimization using response surface methodology [J]. Particulate Science and Technology, 2016, 34(2): 165-172. [百度学术]
LI X J, LIU B, LAO Y M, et al. Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles [J]. Chemical Engineering Journal, 2021, 408: 127252. [百度学术]
张羽涵, 万俊力, 邓芸, 等. 磁核颗粒自生成的磁絮凝除藻特性[J]. 环境科学与技术, 2019, 42(10): 95-100. [百度学术]
ZHANG Y H, WAN J L, DENG Y, et al. Characteristics of algae removal by magnetic flocculation of self-generated magnetic particles [J]. Environmental Science & Technology, 2019, 42(10): 95-100. (in Chinese) [百度学术]
刘诗楠. Fe3O4/PAC磁絮凝剂制备及产油微藻分离效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [百度学术]
LIU S N. Preparation of Fe3O4/PAC magnetic flocculant and study on separation efficiency of oil-producing microalgae [D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [百度学术]
JIANG C, WANG R, MA W. The effect of magnetic nanoparticles on Microcystis aeruginosa removal by a composite coagulant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369(1/2/3): 260-267. [百度学术]
HU Y R, GUO C, WANG F, et al. Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine [J]. Chemical Engineering Journal, 2014, 242: 341-347. [百度学术]
WANG T, YANG W L, HONG Y, et al. Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae [J]. Chemical Engineering Journal, 2016, 297: 304-314. [百度学术]
LIU P R, ZHANG H L, WANG T, et al. Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae [J]. Algal Research, 2016, 19: 86-95. [百度学术]
LIU P R, WANG T, YANG Z Y, et al. Long-chain poly-arginine functionalized porous Fe3O4 microspheres as magnetic flocculant for efficient harvesting of oleaginous microalgae [J]. Algal Research, 2017, 27: 99-108. [百度学术]
赵远. 阳离子聚合物包覆Fe3O4收集普通小球藻的性能与机制研究[D]. 北京: 北京林业大学, 2019. [百度学术]
ZHAO Y. The study of the harvesting efficiency and mechanism of chlorella vulgaris using Fe3O4 coated with cationic polymers [D]. Beijing: Beijing Forestry University, 2019. (in Chinese) [百度学术]
LEE K, LEE S Y, PRAVEENKUMAR R, et al. Repeated use of stable magnetic flocculant for efficient harvest of oleaginous Chlorella sp. [J]. Bioresource Technology, 2014, 167: 284-290. [百度学术]
SEO J Y, LEE K, LEE S Y, et al. Effect of Barium ferrite particle size on detachment efficiency in magnetophoretic harvesting of oleaginous Chlorella sp [J]. Bioresource Technology, 2014, 152: 562-566. [百度学术]
ZHOU Y H, ZHENG H L, HUANG Y Y, et al. Hydrophobic modification of cationic microblocked polyacrylamide and its enhanced flocculation performance for oily wastewater treatment [J]. Journal of Materials Science, 2019, 54(13): 10024-10040. [百度学术]
ZHAO C L, ZHOU J Y, YAN Y, et al. Application of coagulation/flocculation in oily wastewater treatment: A review [J]. Science of the Total Environment, 2021, 765: 142795. [百度学术]
HU J X, ZHAN Y Q, ZHANG G Y, et al. Durable and super-hydrophilic/underwater super-oleophobic two-dimensional MXene composite lamellar membrane with photocatalytic self-cleaning property for efficient oil/water separation in harsh environments [J]. Journal of Membrane Science, 2021, 637: 119627. [百度学术]
LV T, ZHANG S, QI D M, et al. Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant [J]. Journal of Colloid and Interface Science, 2018, 518: 76-83. [百度学术]
FANG S W, CHEN B, ZHANG H, et al. The effects of ultrasonic time, temperature, size and polyether type on performances of magnetic flocculants for oily wastewater produced from polymer flooding treatment [J]. Separation Science and Technology, 2016, 51(18): 2991-2999. [百度学术]
DUAN M, XU Z P, ZHANG Y L, et al. Core-shell composite nanoparticles with magnetic and temperature dual stimuli-responsive properties for removing emulsified oil [J]. Advanced Powder Technology, 2017, 28(5): 1291-1297. [百度学术]
LÜ T, CHEN Y, QI D M, et al. Treatment of emulsified oil wastewaters by using chitosan grafted magnetic nanoparticles [J]. Journal of Alloys and Compounds, 2017, 696: 1205-1212. [百度学术]
潘莲莲. 磁性破乳——絮凝剂的制备及在细乳化含油废水中的应用[D]. 浙江 舟山: 浙江海洋大学, 2017. [百度学术]
PAN L L. Preparation of magnetic demulsification-flocculant and its application in tight emulsified oily wastewater [D]. Zhoushan, Zhejiang: Zhejiang Ocean University, 2017. (in Chinese) [百度学术]
贺聪慧, 王祺, 梁瑞松, 等. 磁强化处理技术在城市污水处理中的研究与应用进展[J]. 环境科学学报, 2021, 41(1): 54-69. [百度学术]
HE C H, WANG Q, LIANG R S, et al. Analyse of magnetically enhanced treatment in municipal sewage system [J]. Acta Scientiae Circumstantiae, 2021, 41(1): 54-69. (in Chinese) [百度学术]
苏舟. 微生物絮凝剂吸附水中磺胺类抗生素的效能及机制[D]. 哈尔滨: 哈尔滨工业大学, 2018. [百度学术]
SU Z. The efficacy and mechanism of bioflocculant in adsorbing sulfonamides in wastewater [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese) [百度学术]
SUN Q, ZHENG H L, HU X B, et al. Magnetic template anion polyacrylamide-polydopamine-Fe3O4 combined with ultraviolet/H2O2 for the rapid enrichment and degradation of diclofenac sodium from aqueous environment [J]. Polymers, 2020, 12(1): 72. [百度学术]
汤爱琪. 磁性微生物絮凝剂的制备及其对微塑料的吸附效能[D]. 哈尔滨: 哈尔滨工业大学, 2020. [百度学术]
TANG A Q. Preparation of magnetic bioflocculants and its adsorption efficiency for microplastics [D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) [百度学术]
HE Y, LIU J W, SONG P B, et al. Magnetic hybrid coagulant for rapid and efficient removal of nitrogen compounds from municipal wastewater and its mechanistic investigation [J]. Chemical Engineering Journal, 2021, 417: 127990. [百度学术]
BRATSKAYA S, SCHWARZ S, CHERVONETSKY D. Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate [J]. Water Research, 2004, 38(12): 2955-2961. [百度学术]
WALTON J R. Aluminum involvement in the progression of Alzheimer’s disease [J]. Journal of Alzheimer's Disease, 2013, 35(1): 7-43. [百度学术]
GREGORY J, O'MELIA C R. Fundamentals of flocculation [J]. Critical Reviews in Environmental Science and Technology, 1989, 19(3): 185-230. [百度学术]
YANG R, LI H J, HUANG M, et al. A review on chitosan-based flocculants and their applications in water treatment [J]. Water Research, 2016, 95: 59-89. [百度学术]
DUAN J M, GREGORY J. Coagulation by hydrolysing metal salts [J]. Advances in Colloid and Interface Science, 2003, 100/101/102: 475-502. [百度学术]
EDZWALD J K. Coagulation in drinking water treatment: Particles, organics and coagulants [J]. Water Science and Technology, 1993, 27(11): 21-35. [百度学术]
GLASGOW L A, KIM Y H. A review of the role of the physicochemical environment in the production of certain floc properties [J]. Water, Air, and Soil Pollution, 1989, 47(1/2): 153-174. [百度学术]
殷峻, 林莹, 李娜, 等. 纳米颗粒对功能型微生物的毒性效应研究进展[J]. 中国给水排水, 2016, 32(18): 23-28. [百度学术]
YIN J, LIN Y, LI N, et al. Research progress on toxicity of nanoparticles to functional microorganisms [J]. China Water & Wastewater, 2016, 32(18): 23-28. (in Chinese) [百度学术]
BABATUNDE A O, ZHAO Y Q. Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses [J]. Critical Reviews in Environmental Science and Technology, 2007, 37(2): 129-164. [百度学术]