摘要
在爆炸荷载作用下,建筑结构会产生不同程度的损伤,甚至可能发生连续性倒塌。建筑结构性能评价是爆炸灾后重建阶段结构处置与修复加固方式选择的重要依据,是指在爆炸发生之后,考虑建筑爆炸损伤,对建筑结构的残余性能进行分析和评定。经过几十年的发展,建筑结构抗爆研究已经成为一个热门研究方向,许多学者开展了诸多相关研究,但现有研究成果大多为爆炸发生前的防护设计与分析。为了促进该领域更加全面深入的研究,为灾后重建工作提供技术支持,对爆炸灾后建筑结构性能评价涉及的一些关键问题进行详细的介绍与总结,并对可行修复加固技术的相关研究及应用进行总结与评述。经过多年发展,学者们建立了用于结构构件爆炸损伤评估的超压—冲量曲线和残余承载力评估公式,提出了建筑爆炸损伤等级及受灾区域划分方法,并在碳纤维布加固修复钢筋混凝土结构方面积累了丰富经验,但目前关于灾后建筑结构性能评定及修复的研究仍处于起步阶段,距离实际工程应用还有较大差距。
现代城市的安全运行面临着来自地震、台风、火灾和爆炸等多种极端灾害的严重威胁。自20世纪中叶以来,爆炸事件已逐渐发展成为严重威胁城市安全、导致重大人员伤亡和财产损失的主要原因之一。如1983年贝鲁特军营恐怖爆炸事件造成241人遇难、105人受伤;1995年美国俄克拉何马城联邦大厦汽车炸弹爆炸事件造成168人遇难、680多人受伤,直接经济损失6.52亿美元;2005年伦敦地铁公交连环爆炸事件造成56人遇难、700多人受
为了促进建筑结构爆炸灾后性能评价和修复领域相关研究的发展,综述了建筑结构爆炸损伤评估、爆炸受损结构抗灾性能分析和损伤修复与加固等领域的最新研究成果,对爆炸灾后建筑结构性能评价涉及的一些关键问题进行详细介绍与总结,并对一些热门的建筑结构修复加固技术进行总结与评述,对目前研究的不足之处进行讨论,并对今后的工作进行展望。
在开展建筑结构爆炸灾后性能评价及修复工作之前,首先需要对爆炸规模及其造成结构构件损伤的程度和分布情况进行评估。建筑结构构件爆炸损伤评估最为关键的是建立可靠的损伤评估准则。地震荷载和爆炸荷载都是建筑结构设计时需要重点考虑的偶然荷载,相比于抗震研究,建筑抗爆研究起步稍晚,期间借鉴了建筑抗震的相关研究思路,如等效单自由度方法、基于数值手段的多参数分析法、蒙特卡洛方法及人工智能算法等,在建筑结构抗震和抗爆领域均有应用。但是,不同于地震荷载低周往复加载的特点,爆炸荷载具有持时短、幅值大、衰减快、作用位置不定和分布不均等特征,因此,爆炸产生的应变率效应更明显,且结构大多倾向于弯曲破坏、弯剪破坏或局部破坏。虽然建筑抗震和抗爆领域的研究方法基本大同小异,但由于所提出的构件损伤评估模型大多是针对预定荷载场景的经验方法,具有各自的适用范围,不能一概而论。近年来,学者们对不同结构构件在爆炸荷载作用下的动力响应及破坏模式展开了研究,提出了结构构件损伤程度评估方法。根据评估方法输入参数的不同,可以将这些方法分为两类:一类是基于爆炸荷载的损伤评估方法,包括超压—冲量曲线图及各类采用比例距离和炸药当量为主要输入指标的经验方法;另一类方法则依赖于灾后现场检测结果进行损伤评估,现场检测内容包括相对残余变形、混凝土剥落程度和振动频率变化等。
超压—冲量曲线是指结构构件在爆炸荷载作用下对应某一损伤程度的等损伤曲线。在对二战中遭到炸弹破坏的英国砌体建筑进行评估时首次引入该方法,随后被广泛应用于对爆炸荷载作用下各类结构损伤及人体伤亡情况的评
除超压—冲量曲线方法外,另一种基于爆炸荷载的构件损伤评估方法主要采用炸药当量或比例距离作为输入参数。例如,Chen

图1 爆炸作用下RC柱损伤的分
Fig. 1 Damage partition of of RC columns under blas
经过几十年的发展,基于爆炸荷载的构件损伤评估方法已相对成熟,但这种方法仅适用于爆炸荷载或炸药当量已知的情形。在爆炸灾后,作用于损伤结构上的爆炸荷载严重依赖于灾后爆炸源反演和冲击波传播计算结果,很难确定。为了克服上述缺点,学者们基于相对残余变形、混凝土剥落或炸坑、自振频率变化等灾后现场可检测指标,通过试验或数值方法,提出了典型结构构件损伤程度评估的判别准则或经验公式。例如,Bao
综上所述,爆炸灾后结构构件的损伤评估仍面临挑战。一方面,爆炸灾后作用于建筑上的爆炸荷载很难及时准确地获取;另一方面,现有研究针对同一构件提出了不同的破坏准则,如剩余承载力、残余变形、混凝土剥落程度、局部应力和应变及模态信息等,不同破坏准则的有效性及适用范围有待进一步研究。在爆炸荷载未知的情况下,如何通过现场无损检测方法,结合受损结构构件的动态性能等参数识别结构构件的损伤程度与破坏模式,是建立爆炸灾后构件损伤评估方法的关键。
灾后建筑结构性能评价是在建筑结构构件爆炸损伤评估的基础上,对建筑结构在剩余使用寿命期限内的持久工况、短暂工况和偶然工况下的性能进行深入研究,对结构的承载能力和正常使用状态进行科学判断,其结果将直接为建筑结构的留用、修复或拆除等最终处置提供科学依
类似于结构构件的损伤评估,对于单体建筑,其整体损伤评价也有对应的超压准则或超压—冲量准则。例如,Pape

图2 天津港爆炸中交警大楼损伤情况现场实
Fig. 2 Scene of the damage of the traffic cop building in Tianjin Port explosio

图3 天津港爆炸中交警大楼损伤评
Fig. 3 Damage assessment of the traffic cop building in Tianjin Port explosio
灾后现场调查也是单体建筑灾后性能评价的重要方式,现场调查和检测不仅可以直观地理解爆炸损伤和结构破坏的机理,也可以有效地对受损建筑物进行分类。
针对城市建筑群的灾后评价,通常做法是先对涉灾的各个建筑逐一进行评价,划定某一分类等级,然后汇总得到不同等级的受灾区域。在江苏响水“3·21”特别重大爆炸事故调查报告中,依据该方法将涉灾城市建筑群划分为严重受损、中度受损和玻璃受损3个区

图4 江苏响水“3·21”爆炸冲击影响区域示意
Fig. 4 Schematic diagram of affected areas by "3·21" explosion in Xiangshui, Jiangsu Provinc

图5 贝鲁特港爆炸建筑损伤遥感分析
Fig. 5 Remote sensing analysis diagram of building damage in Beirut Port explosio

图6 巴塔军营爆炸建筑损伤遥感分析
Fig. 6 Remote sensing analysis diagram of building damage in Bata military barracks explosio
针对单个建筑和城市建筑群的灾后损伤评价方法都只是对受损建筑进行受损等级分类和区域划分,属于快速评价方法,适合于灾后应急救援阶段。在灾后重建阶段,需要更为精确的建筑抗灾性能评价方法,为建筑结构的留用、修复或拆除等最终处置方案提供科学依据。可行的做法是在结构构件损伤评估结果的基础上,研究建筑结构局部构件损伤与建筑整体性能之间的关系。然而,建筑结构局部构件损伤与建筑整体性能之间的联系是一个十分复杂的课题。为了建立上述关系,学者们对建筑结构在爆炸荷载作用下因关键构件失效引发的整体连续倒塌进行了系统研究。例如,Luccioni
综上所述,现有爆炸灾后建筑结构局部构件损伤与建筑整体性能关系的研究主要关注的是建筑结构的抗连续倒塌性能。然而,灾后建筑抗灾性能评价更为关心的是那些受损而未倒塌的建筑,灾后建筑结构抗灾性能的精确评价可以为其灾后处置方案提供科学依据。如何依据局部结构构件的损伤破坏情况对整体建筑结构的抗灾性能进行评估依然是这一研究领域面临的重大挑战。一种可能的解决办法是基于建筑原始资料,结合现场无损检测,建立考虑爆炸引起初始损伤的建筑结构数值模型修正技术,并基于该模型对已损伤建筑结构的抗灾性能进行评价。与此同时,受损建筑结构能否长期使用,除了承载力安全外,其抗震、抗爆等综合抗灾性能也很重要。目前尚缺少对受损建筑结构抗震、抗爆等综合抗灾性能的研究。
在得到建筑性能评价结果之后,就可以依据评价结果对受损建筑进行处置,包括修复和拆除。在爆炸灾后建筑性能修复与提升方面,修复技术和方案的选择尤为重要,《混凝土结构加固设计规范》(GB 50367—2013
纤维复合材料是当前结构抗爆研究领域中最为常用的加固材料,各国均出台了特定的技术规范和标准,例如,美国混凝土协会(ACI)、国际结构混凝土协会(FIB)以及日本土木工程学会(JSCE)均颁布了外贴FRP加固钢筋混凝土结构的技术标
在CFRP布修复裂缝结构以提升其抗爆性能研究方面,Kong
目前,针对受爆炸损伤结构修复及其性能提升的案例和研究仍旧很少。在爆炸荷载作用下,钢筋混凝土结构或构件的损伤类型主要包括轻微裂缝或贯通裂缝、混凝土剥落、结构残余变形、钢筋屈服或断裂等。中国学者在这方面的研究多以某一爆炸事故为例,介绍爆炸现场调查及检测情况,并根据检测结果提出修复加固方
采用CFRP外贴修复受爆炸损伤后钢筋混凝土构件施工简便,现有研究中多采用此类加固方法。外贴CFRP材料不仅能为受损结构构件提供必要的抗拉强度,还可以对包裹混凝土产生约束作用。CFRP包裹修复爆炸损伤后的钢筋混凝土结构或构件一般包括预处理、填充高强砂浆、涂抹环氧腻子和粘贴CFRP布4个主要步骤。大量试验研究表明,在试验过程中,FRP加固的试件比较容易产生纤维带的剥离破
经过几十年的发展,学者们在建筑结构抗爆研究领域已取得许多重要成果,建立了用于结构构件爆炸损伤评估的超压—冲量曲线和残余承载力经验公式,提出了建筑损伤等级及受灾区域划分方法,并在CFRP加固修复钢筋混凝土结构方面积累了丰富经验。但是,目前关于灾后建筑结构性能评定及修复的研究仍处于起步阶段,距离实际工程应用还有很大的差距,主要不足:
1)在灾后建筑结构构件损伤评估方面,目前缺乏有效的损伤评估判定准则。一方面,基于超压—冲量曲线的损伤评估方法有赖于灾后爆炸源反演和爆炸荷载计算的结果;另一方面,在爆炸荷载未知的情况下,如何通过现场无损检测方法,结合受损结构构件的动态性能等参数,识别结构构件的损伤程度与破坏模式,是建立爆炸灾后构件损伤评估方法亟须解决的关键问题。
2)现有研究大多针对结构构件或围护构件损伤评估开展,而有关爆炸中建筑结构构件损伤与整体性能联系的研究也基本都是基于预定爆炸场景或荷载的连续性倒塌分析。对于在爆炸中未发生连续倒塌的建筑结构,缺乏有关结构构件局部破坏与整体结构安全之间关系的定量研究。
3)灾后建筑结构的修复和性能提升十分复杂,目前相关研究匮乏,现有文献仅在试验条件下对结构构件的裂缝等损伤进行简单修复,且主要为CFRP外贴修复加固,尚未涉及实际工程中可能遇到的更为复杂的情况,离工程应用还有很大的差距。
因此,急需开展详细的灾后建筑结构综合抗灾性能评估理论与方法研究,提出爆炸受损建筑结构修复及加固技术,为爆炸灾后建筑结构的拆除或修复加固提供科学依据,具体包括以下几个方面:
1)建筑结构损伤评价与安全性能评估。针对爆炸受损但未倒塌的建筑结构,揭示建筑结构局部构件破坏与整体结构安全之间的关系,提出建筑结构整体损伤破坏准则及损伤程度评定方法,建立爆炸荷载作用后建筑结构安全性能评估方法。
2)建筑结构综合抗灾性能评价。在构件损伤评估的基础上,进一步开展构件损伤映射、数值模型修正和建筑结构安全性能评价体系研究,提出考虑爆炸引起初始损伤的受损构件及结构数值模型修正技术,建立爆炸灾后构件及结构抗震、抗爆及综合抗灾性能的分析方法,提出构件及结构综合抗灾性能的评价标准,建立灾后结构构件及结构综合抗灾性能评价方法。
3)灾后受损结构的修复与加固。从结构构件、围护构件和建筑整体3个层面出发,研究爆炸受损建筑结构修复与加固技术,包括结构构件加固技术措施、围护构件减、防爆技术措施及建筑整体防倒塌(地震倒塌和爆炸连续倒塌)技术措施等。
参考文献
FRYKBERG E R, TEPAS J J, ALEXANDER R H. The 1983 Beirut Airport terrorist bombing. Injury patterns and implications for disaster management [J]. The American Surgeon, 1989, 55(3): 134-141. [百度学术]
MLAKAR P F, CORLEY W G, SOZEN M A, et al. The Oklahoma City bombing: Analysis of blast damage to the Murrah Building [J]. Journal of Performance of Constructed Facilities, 1998, 12(3): 113-119. [百度学术]
OSTERAAS J D. Murrah building bombing revisited: A qualitative assessment of blast damage and collapse patterns [J]. Journal of Performance of Constructed Facilities, 2006, 20(4): 330-335. [百度学术]
BREWIN C R, SCRAGG P, ROBERTSON M, et al. Promoting mental health following the London bombings: A screen and treat approach [J]. Journal of Traumatic Stress, 2008, 21(1): 3-8. [百度学术]
方秦, 杨石刚, 陈力, 等. 天津港“8·12”特大火灾爆炸事故建筑物和人员损伤破坏情况及其爆炸威力分析[J]. 土木工程学报, 2017, 50(3): 12-18. [百度学术]
FANG Q, YANG S G, CHEN L, et al. Analysis on the building damage, personnel casualties and blast energy of the “8·12” explosion in Tianjin Port [J]. China Civil Engineering Journal, 2017, 50(3): 12-18. (in Chinese) [百度学术]
陈大鹏, 陈力, 还毅, 等. 盐城响水化工园区“3·21”危化品爆炸事故爆炸威力分析及灾害后果评估[J]. 防灾减灾工程学报, 2020, 40(2): 196-203. [百度学术]
CHEN D P, CHEN L, HUAN Y, et al. Analysis on the power and disaster consequences of “3·21” explosion accident in the chemical industry park of Xiangshui, Yancheng [J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(2): 196-203. (in Chinese) [百度学术]
SIVARAMAN S, VARADHARAJAN S. Investigative consequence analysis: A case study research of Beirut explosion accident [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104387. [百度学术]
DRAGANIĆ H, GAZIĆ G, VAREVAC D. Experimental investigation of design and retrofit methods for blast load mitigation: A state-of-the-art review [J]. Engineering Structures, 2019, 190: 189-209. [百度学术]
LUCCIONI B M, AMBROSINI R D, DANESI R F. Analysis of building collapse under blast loads [J]. Engineering Structures, 2004, 26(1): 63-71. [百度学术]
SHI Y C, LI Z X, HAO H. A new method for progressive collapse analysis of RC frames under blast loading [J]. Engineering Structures, 2010, 32(6): 1691-1703. [百度学术]
JARRETT D E. Derivation of the British explosives safety distances [J]. Annals of the New York Academy of Sciences, 1968, 152(1): 18-35. [百度学术]
SHI Y C, HAO H, LI Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213-1227. [百度学术]
MUTALIB A A, HAO H. Development of P-I diagrams for FRP strengthened RC columns [J]. International Journal of Impact Engineering, 2011, 38(5): 290-304. [百度学术]
PARISI F. Blast fragility and performance-based pressure-impulse diagrams of European reinforced concrete columns [J]. Engineering Structures, 2015, 103: 285-297. [百度学术]
WANG W, ZHANG D, LU F Y, et al. Pressure-impulse diagram with multiple failure modes of one-way reinforced concrete slab under blast loading using SDOF method [J]. Journal of Central South University, 2013, 20(2): 510-519. [百度学术]
XU J C, WU C Q, LI Z X. Analysis of direct shear failure mode for RC slabs under external explosive loading [J]. International Journal of Impact Engineering, 2014, 69: 136-148. [百度学术]
AL-THAIRY H. A modified single degree of freedom method for the analysis of building steel columns subjected to explosion induced blast load [J]. International Journal of Impact Engineering, 2016, 94: 120-133. [百度学术]
SHI J H, ZHU Y, CHEN G M, et al. Assessment on blast loading resistance capacity of corrugations on offshore cabins based on the P-I model [J]. Process Safety and Environmental Protection, 2017, 105: 237-249. [百度学术]
ZHANG F R, WU C Q, ZHAO X L, et al. Numerical derivation of pressure-impulse diagrams for square UHPCFDST columns [J]. Thin-Walled Structures, 2017, 115: 188-195. [百度学术]
LIAO Z, TANG D G, LI Z Z, et al. Study on explosion resistance performance experiment and damage assessment model of high-strength reinforcement concrete beams [J]. International Journal of Impact Engineering, 2019, 133: 103362. [百度学术]
ZHANG X H, HAO H, MA G W. Parametric study of laminated glass window response to blast loads [J]. Engineering Structures, 2013, 56: 1707-1717. [百度学术]
陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压—冲量曲线简化计算研究[J]. 振动与冲击, 2016, 35(13): 224-232. [百度学术]
CHEN J J, GAO K H, SUN A. Simplified calculation method for pressure-impulse curve of a structure under blast load [J]. Journal of Vibration and Shock, 2016, 35(13): 224-232. (in Chinese) [百度学术]
HUANG X, BAO H R, HAO Y F, et al. Damage assessment of two-way RC slab subjected to blast load using mode approximation approach [J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750013. [百度学术]
CHEN L, HU Y, REN H Q, et al. Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. International Journal of Impact Engineering, 2019, 132: 103326. [百度学术]
李忠献, 钟波, 师燕超. 爆炸作用下RC柱损伤快速评估模型[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 973-978. [百度学术]
LI Z X, ZHONG B, SHI Y C. Fast assessment model for damage of RC columns under blast loading [J]. Journal of Tianjin University (Science and Technology), 2014, 47(11): 973-978. (in Chinese) [百度学术]
LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41-55. [百度学术]
IBRAHIM A, SALIM H, FLOOD I. Damage prediction for RC slabs under near-field blasts using artificial neural network [J]. International Journal of Protective Structures, 2011, 2(3): 315-332. [百度学术]
BAO X L, LI B. Residual strength of blast damaged reinforced concrete columns [J]. International Journal of Impact Engineering, 2010, 37(3): 295-308. [百度学术]
CUI J, SHI Y C, LI Z X, et al. Failure analysis and damage assessment of RC columns under close-in explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(5): B4015003. [百度学术]
周龙云, 石磊, 徐令宇, 等. 爆炸冲击作用下H型钢柱损伤等级快速评估[J]. 防灾减灾工程学报, 2019, 39(5): 851-857. [百度学术]
ZHOU L Y, SHI L, XU L Y, et al. Method for classifying damage level of steel column under impact of explosion [J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(5): 851-857. (in Chinese) [百度学术]
师燕超, 李绍琦, 李忠献, 等. 基于实测频率的钢筋混凝土柱爆炸损伤快速评估方法[J]. 建筑结构学报, 2021, 42(11): 155-164. [百度学术]
SHI Y C, LI S Q, LI Z X, et al. Rapid evaluation method for blast damage of reinforced concrete columns based on measured frequency [J]. Journal of Building Structures, 2021, 42(11): 155-164. (in Chinese) [百度学术]
混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011. [百度学术]
Code for design of concrete structures: GB 50010-2010 [S]. Beijing: China Architecture & Building Press, 2011. (in Chinese) [百度学术]
钢结构设计规范: GB 50017—2003 [S]. 北京: 中国计划出版社, 2003. [百度学术]
Code for design of steel structures: GB 50017-2003 [S]. Beijing: China Planning Press, 2003. (in Chinese) [百度学术]
范夕森, 李少伟. 城市建筑群体抗震性能评价在抗震防灾规划中的应用[J]. 工程抗震与加固改造, 2017, 39(Sup1): 63-68. [百度学术]
FAN X S, LI S W. Application of earthquake resistance capacity assessment for group of structures in urban planning on earthquake resistance and hazardous prevention [J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(Sup1): 63-68. (in Chinese) [百度学术]
PAPE R, MNISZEWSKI K R, LONGINOW A, et al. Explosion phenomena and effects of explosions on structures. Ⅲ: Methods of analysis (explosion damage to structures) and example cases [J]. Practice Periodical on Structural Design and Construction, 2010, 15(2): 153-169. [百度学术]
STEPHENS M M. Minimizing damage to refineries from nuclear attack, natural and other disasters [R]. Office of Oil and Gas, Washington, D.C. (USA), 1970. [百度学术]
Federal Emergency Management Agency. Safe rooms and shelters-protecting people against terrorist attacks [M]. Washington: Federal Emergency Management Agency, 2006. [百度学术]
CHEE K H, KRAUTHAMMER T, ASTARLIOGLU S. Shallow buried RC structures behavior under airblast in the time and P-I domains [J]. Engineering Structures, 2020, 203: 109885. [百度学术]
ELLIOTT C L, MAYS G C, SMITH P D. The protection of buildings against terrorism and disorder [J]. Proceedings of the Institution of Civil Engineers- Structures and Buildings, 1992, 94(3): 287-297. [百度学术]
李殷. 建筑物爆炸破坏快速评估技术研究[D]. 长沙: 国防科学技术大学, 2015. [百度学术]
LI Y. Study on rapid assessments method of damage to buildings under blast loading [D]. Changsha: National University of Defense Technology, 2015. (in Chinese) [百度学术]
GILBERT S M. A model for the effects of a condensed phase explosion in a built-up-area [D]. Loughborough University, UK, 1994. [百度学术]
VOORT M MVAN DER, WEES R M MVAN, BROUWER S D, et al. Forensic analysis of explosions: Inverse calculation of the charge mass [J]. Forensic Science International, 2015, 252: 11-21. [百度学术]
SORENSEN A, MCGILL W L. What to look for in the aftermath of an explosion? A review of blast scene damage observables [J]. Engineering Failure Analysis, 2011, 18(3): 836-845. [百度学术]
TURGUT P, GUREL M A, PEKGOKGOZ R K. LPG explosion damage of a reinforced concrete building: A case study in Sanliurfa, Turkey [J]. Engineering Failure Analysis, 2013, 32: 220-235. [百度学术]
国务院事故调查组. 江苏响水天嘉宜化工有限公司“3·21”特别重大爆炸事故调查报告[R]. 2019. [百度学术]
Accident Investigation Group of State Council. Investigation report on "3·21" major explosion accident in Tianjiayi Chemical Co., LTD., Xiangshui, Jiangsu [R]. 2019. [百度学术]
ZHENG Z, ZHONG Y F, WANG J J, et al. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters [J]. Remote Sensing of Environment, 2021, 265: 112636. [百度学术]
ELSANADEDY H M, ALMUSALLAM T H, ALHARBI Y R, et al. Progressive collapse potential of a typical steel building due to blast attacks [J]. Journal of Constructional Steel Research, 2014, 101: 143-157. [百度学术]
AL-SALLOUM Y A, ALMUSALLAM T H, KHAWAJI M Y, et al. Progressive collapse analysis of RC buildings against internal blast [J]. Advances in Structural Engineering, 2015, 18(12): 2181-2192. [百度学术]
曾繁, 肖桂仲, 冯晓伟, 等. 砌体结构长脉宽爆炸荷载损伤等级评估方法[J]. 爆炸与冲击, 2021, 41(10): 127-137. [百度学术]
ZENG F, XIAO G Z, FENG X W, et al. A damage assessment method for masonry structures subjected to long duration blast loading [J]. Explosion and Shock Waves, 2021, 41(10): 127-137. (in Chinese) [百度学术]
GOMBEDA M J, NAITO C J, QUIEL S E, et al. Blast-induced damage mapping framework for use in threat-dependent progressive collapse assessment of building frames [J]. Journal of Performance of Constructed Facilities, 2017, 31(2): 04016089. [百度学术]
薄景山, 张毅毅, 郭晓云, 等. 结构抗震设计理论与方法的沿革和比较[J]. 震灾防御技术, 2021, 16(3): 566-572. [百度学术]
BO J S, ZHANG Y Y, GUO X Y, et al. Evolution and comparison of different structural seismic design theories and methods [J]. Technology for Earthquake Disaster Prevention, 2021, 16(3): 566-572. (in Chinese) [百度学术]
ABEDINI M, ZHANG C W, MEHRMASHHADI J, et al. Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column [J]. Structures, 2020, 28: 456-466. [百度学术]
混凝土结构加固设计规范: GB 50367—2013 [S]. 北京: 中国建筑工业出版社, 2014. [百度学术]
Code for design of strengthening concrete structure: GB 50367-2013 [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese) [百度学术]
钢结构加固设计标准: GB 51367—2019 [S]. 北京: 中国建筑工业出版社, 2019. [百度学术]
Standard for design of strengthening steel structure: GB 51367-2019 [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese) [百度学术]
LI J B, GONG J X, WANG L C. Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket [J]. Construction and Building Materials, 2009, 23(7): 2653-2663. [百度学术]
YAQUB M, BAILEY C G, NEDWELL P, et al. Strength and stiffness of post-heated columns repaired with ferrocement and fibre reinforced polymer jackets [J]. Composites Part B: Engineering, 2013, 44(1): 200-211. [百度学术]
KONG X Q, ZHAO Q, QU Y D, et al. Blast response of cracked reinforced concrete slabs repaired with CFRP composite patch [J]. KSCE Journal of Civil Engineering, 2018, 22(4): 1214-1224. [百度学术]
曲艳东, 李鑫, 刘万里, 等. CFRP加固含初始裂纹的RC梁的抗爆性能研究[J]. 玻璃钢/复合材料, 2016(8): 53-56, 26. [百度学术]
QU Y D, LI X, LIU W L, et al. Numerical analysis of anti-explosion performances of RC beam with initial cracks strengthened with CFRP sheets [J]. Fiber Reinforced Plastics/Composites, 2016(8): 53-56, 26. (in Chinese) [百度学术]
PEREIRA J M, GHASEMNEJAD H, WEN J X, et al. Blast response of cracked steel box structures repaired with carbon fibre-reinforced polymer composite patch [J]. Materials & Design, 2011, 32(5): 3092-3098. [百度学术]
XU C X, PENG S, DENG J, et al. Study on seismic behavior of encased steel jacket-strengthened earthquake-damaged composite steel-concrete columns [J]. Journal of Building Engineering, 2018, 17: 154-166. [百度学术]
XU C X, GUO C, XU Q Q, et al. The global collapse resistance capacity of a seismic-damaged SRC frame strengthened with an enveloped steel jacket [J]. Structures, 2021, 33: 3433-3442. [百度学术]
SOMAN M, MOHAN J. Rehabilitation of RC columns using ferrocement jacketing [J]. Construction and Building Materials, 2018, 181: 156-162. [百度学术]
Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures: ACI 440.2R-17 [M]. American Concrete Institute, 2017. [百度学术]
CEB-FIB externally bonded FRP reinforcement for RC structures [R]. Lausanne: FIB, 2001. [百度学术]
Recommendations for upgrading of concrete structures with use of continuous fiber sheets [S]. The Japan Society of Civil Engineers (JSCE), 2001. [百度学术]
MORRILL K B, MALVAR L J, CRAWFORD J E, et al. Blast resistant design and retrofit of reinforced concrete columns and walls [C]//Structures Congress 2004. May 22-26, 2004, Nashville, Tennessee, USA. Reston, VA, USA: American Society of Civil Engineers, 2004: 1-8. [百度学术]
BERGER J O, HEFFERNAN P J, WIGHT R G. Blast testing of CFRP and SRP strengthened RC columns [C]//WIT Transactions on the Built Environment, Structures Under Shock and Impact X. May 14-16, 2008. Algarve, Portugal. Southampton, UK: WIT Press, 2008: 95-104. [百度学术]
潘金龙, 罗敏, 周甲佳. 爆炸荷载下CFRP加固圆柱的动力响应和破坏机理[J]. 天津大学学报, 2010, 43(9): 755-761. [百度学术]
PAN J L, LUO M, ZHOU J J. Dynamic responses and failure mechanism of reinforced concrete cylindrical column wrapped with CFRP under blast loading [J]. Journal of Tianjin University, 2010, 43(9): 755-761. (in Chinese) [百度学术]
CHENG D H, YANG Y H. Design method for concrete columns strengthened with prestressed CFRP sheets [J]. Construction and Building Materials, 2017, 151: 331-344. [百度学术]
ELSANADEDY H M, ALMUSALLAM T H, ABBAS H, et al. Effect of blast loading on CFRP-retrofitted RC columns: A numerical study [J]. Latin American Journal of Solids and Structures, 2011, 8(1): 55-81. [百度学术]
YAN J B, LIU Y, XU Z X, et al. Experimental and numerical analysis of CFRP strengthened RC columns subjected to close-in blast loading [J]. International Journal of Impact Engineering, 2020, 146: 103720. [百度学术]
HU Y, CHEN L, FANG Q, et al. Study of CFRP retrofitted RC column under close-in explosion [J]. Engineering Structures, 2021, 227: 111431. [百度学术]
LI Z X, ZHANG X J, SHI Y C, et al. Predication of the residual axial load capacity of CFRP-strengthened RC column subjected to blast loading using artificial neural network [J]. Engineering Structures, 2021, 242: 112519. [百度学术]
陈万祥, 严少华. CFRP加固钢筋混凝土梁抗爆性能试验研究[J]. 土木工程学报, 2010, 43(5): 1-9. [百度学术]
CHEN W X, YAN S H. Experimental study of RC beams strengthened with CFRP under blast loading [J]. China Civil Engineering Journal, 2010, 43(5): 1-9. (in Chinese) [百度学术]
郭樟根, 曹双寅, 王安宝, 等. 爆炸荷载作用下外贴FRP加固钢筋混凝土双向板试验研究[J]. 建筑结构学报, 2011, 32(2): 91-97. [百度学术]
GUO Z G, CAO S Y, WANG A B, et al. Experimantal study on performance of FRP strengthened RC two-way slabs under explosion load [J]. Journal of Building Structures, 2011, 32(2): 91-97. (in Chinese) [百度学术]
SHIRINZADEH M, HAGHOLLAHI A. Performance of shear wall with external reinforcement by CFRP and steel sheets against blast load [J]. Journal of Vibroengineering, 2016, 18(5): 2735-2743. [百度学术]
CHEN L, FANG Q, FAN J Y, et al. Responses of masonry infill walls retrofitted with CFRP, steel wire mesh and laminated bars to blast loadings [J]. Advances in Structural Engineering, 2014, 17(6): 817-836. [百度学术]
陈力, 郑康, 祝融, 等. CFRP加固砌体填充墙抗燃气爆炸泄爆荷载的优化设计及动力响应[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(5): 547-553. [百度学术]
CHEN L, ZHENG K, ZHU R, et al. Optimization design and dynamic responses of CFRP reinforced masonry infilled wall subjected to vented gas explosion [J]. Journal of Tianjin University (Science and Technology), 2018, 51(5): 547-553. (in Chinese) [百度学术]
LI Z, CHEN L, FANG Q, et al. Experimental and numerical study on CFRP strip strengthened clay brick masonry walls subjected to vented gas explosions [J]. International Journal of Impact Engineering, 2019, 129: 66-79. [百度学术]
MAAZOUN A, MATTHYS S, BELKASSEM B, et al. Blast response of retrofitted reinforced concrete hollow core slabs under a close distance explosion [J]. Engineering Structures, 2019, 191: 447-459. [百度学术]
WANG B, WANG P, CHEN Y S, et al. Blast responses of CFRP strengthened autoclaved aerated cellular concrete panels [J]. Construction and Building Materials, 2017, 157: 226-236. [百度学术]
MENG F M, ZHANG B, ZHAO Z, et al. A novel all-composite blast-resistant door structure with hierarchical stiffeners [J]. Composite Structures, 2016, 148: 113-126. [百度学术]
季海峰, 赵强, 赵王强, 等. 爆炸后高层剪力墙结构检测鉴定及加固方法[J]. 消防科学与技术, 2020, 39(7): 1030-1033. [百度学术]
JI H F, ZHAO Q, ZHAO W Q, et al. Detection and reinforcement method of high-rise shear wall structure after explosion [J]. Fire Science and Technology, 2020, 39(7): 1030-1033. (in Chinese) [百度学术]
贾媛媛, 崔少华, 杨晓强. 某框架结构爆炸后检测鉴定及修复加固方案研究[J]. 工程质量, 2017, 35(4): 75-77. [百度学术]
JIA Y Y, CUI S H, YANG X Q. Security detection and research of reinforcement scheme of some flame building after gas explosion [J]. Construction Quality, 2017, 35(4): 75-77. (in Chinese) [百度学术]
HUDSON J L, DARWIN D. Evaluation and repair of blast damaged reinforced concrete beams [R]. University of Kansas Center for Research,Inc., 2005. [百度学术]
CHEN H L, XIE W, JIANG M R, et al. Blast-loaded behaviors of severely damaged buried arch repaired by anchored CFRP strips [J]. Composite Structures, 2015, 122: 92-103. [百度学术]
吴志昇. RC板及加固/修复后抗爆性能与承载力试验研究[D]. 长沙: 国防科技大学, 2018. [百度学术]
WU Z S. Experimental study on the anti-blast performance and load-bearing capacity of non-treated, reinforced and damage-repaired RC slabs [D]. Changsha: National University of Defense Technology, 2018. (in Chinese) [百度学术]
LEE J Y, SHIN H O, MIN K H, et al. Flexural assessment of blast-damaged RC beams retrofitted with CFRP sheet and steel fiber [J]. International Journal of Polymer Science, 2018: 2036436. [百度学术]
TAN K H, ZHAO H D. Strengthening of openings in one-way reinforced-concrete slabs using carbon fiber-reinforced polymer systems [J]. Journal of Composites for Construction, 2004, 8(5): 393-402. [百度学术]
BAJI H, RONAGH H R, LI C Q. Probabilistic assessment of FRP-confined reinforced concrete columns [J]. Composite Structures, 2016, 153: 851-865. [百度学术]