网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

能源桩传热特性与热-力响应研究综述  PDF

  • 谢金利 1
  • 覃英宏 1,2
  • 李颖鹏 2
  • 蒙相霖 3
  • 谭康豪 1
  • 张星月 1
1. 广西大学 土木建筑工程学院;工程防灾与结构安全教育部重点实验室,南宁 530004; 2. 桂林理工大学 土木与建筑工程学院,广西 桂林 541000; 3. 广西交通投资集团有限公司, 南宁 530022

中图分类号: TU473.1

最近更新:2022-11-09

DOI:10.11835/j.issn.2096-6717.2021.084

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

能源桩将地源热泵系统与传统桩基结合,具有换热效率高、占用空间少和成本低等优点。梳理近年来关于能源桩的传热和承载性能两个方面的研究进展,分析能源桩传热性能的影响因素及机理、热—力耦合状态下的结构响应及传热、结构响应的数值模型。在此基础上,提出能源桩下一步的研究建议与展望。分析指出:螺旋形管体的换热面积最大,换热效率最佳;在循环剪切作用下,能源桩的桩—土界面侧摩阻力衰减,使桩基承载力不断弱化;此外,一个周期中的制冷/制热需求不均可能引起地表温度失衡,从而影响换热效率。能源桩的优化设计及长期服役的可靠性将是未来研究的重点。

随着社会经济的快速发展,各行各业对能源的需求量急剧上升。当前主要供应能源为煤炭、石油和天然气等化石能源。传统的化石能源虽能满足目前人类社会对能源的大部分需求,但也向大气中排放了大量温室气体,加剧了气候变[

1]。因此,可再生清洁能源技术的研发迫在眉睫。浅层地热能作为一种可再生能源,具有储量大、分布广、清洁无污染等特点,如何开发和利用浅层地热能已成为当前的研究热点。地源热泵(Ground Source Heat Pump)是目前使用范围最广的浅层地热能开发技术。地源热泵的核心部分是地换热器,主要包括水平、竖直布置两种形式,但因水平布置占地面积大和竖直布置钻孔费用高等问题,限制了地源热泵的大规模发展。而能源桩的出现给地源热泵的广泛应用提供了新的思路。能源桩是通过在建筑结构桩基中埋管,在满足承载要求的同时又可以实现与浅地层的热交换,有效利用了桩基础预成孔,换热面积大,成功克服了传统地源热泵系统的缺[2]。能源桩发展至今已有30余年,中国虽然起步较晚,但成果颇丰,重庆大学、河海大学及清华大学等教学科研单位为能源桩的开发及推广做出了重要贡献。

能源桩的传热是一个复杂的水—热耦合过程,伴随着热传导和对流换热等传热形式,在持续换热过程中,能源桩在桩与桩周围土体中产生温度场,使桩体承受了额外的温度应力。笔者针对能源桩传热过程中涉及的影响因素、传热模型及温度载荷作用下的结构响应状态进行系统地归纳总结,并指出目前研究中的不足和未来工作的方向,供研究人员参考。

1 传热性能影响因素

1.1 流体、管道的传热性能

流体与换热管间通过热对流及热传导进行热交换,通常用换热率QHE和单位管长换热率(QHEP)来衡量换热性能的大小,分别用式(1)式(2)计算。

QHE=Cm˙T (1)
QHEP=QHE/L (2)

式中:QHE为换热率,W;QHEP为单位管长换热率,W/m;C为管内流体的比热容,J/(kg·K);m˙为流量,kg/s;T为进出口流体温度之差,K;L为管体长度,m。

换热率表示单位时间内能源桩与外界发生热交换的规模,数值越大表明桩体与外界热交换越充分;单位管长换热率则描述了管体单位长度的换热量,是衡量换热效率的指标。一般来说,二者数值越大,换热性能越好。影响换热性能的主要因素有管型、螺旋形管桩螺距、循环介质流速和进水口温度等。

1)管型。能源桩管型是影响流体与管壁热对流的决定性因素。管型的设计原则是使管的换热面积最大化。常见的管型有单U型、双U型、三U型、W型、螺旋型等,详见图1表1对比分析了近年来各种管型传热性能的研究成[

3-11]。由于螺旋状管型能提供的换热范围最大,故传热效率最优,但螺旋型管布设形式经济成本较[3],且施工较U型、W型管困难。选择什么样的管型要综合考虑换热性能和施工环境(如桩数、钻孔长度和施工难度等)等因[4]

图1  换热管布设形式示意图

Fig. 1  Schematic diagram of heat exchange tube layout forms

表1  不同管型传热性能比较
Table 1  Comparison of heat transfer of different tube types
文献管型考虑因素研究方法传热性能优劣
Jalaluddin[5] 单U型、双U型、三U型 地面温度、管壁温度、循环介质流速 热响应实验 双U型>三U型>单U型
Florides[6-7] 单U型、双U型 管道尺寸、土壤导热系数、成本、地面分层 数值模拟 双U型>单U型
Gao[8-9] 单U型、双U型、三U型、W型 地面温度、循环介质流量、进口温度、冷热负荷不平衡 热响应实验与数值模拟

高流量:双U型>W型>三U型>单U型

低流量:W型>双U型>三U型>单U型

Zarrella[10] 三U型、螺旋型 螺旋型螺距 等效电路 螺旋型>三U型
Zarrella[11] 双U型、螺旋型 轴向导热、钻孔长度 等效电路 螺旋型>双U型
Yoon[3] W型、螺旋型 间歇运行、成本、桩数量 热响应试验和数值模拟 螺旋型>W型
Luo[4] 双U型、三U型、双W型、螺旋型 间歇运行、管道尺寸、成本 热响应实验与数值模拟 三U型>双W型、螺旋型>双U型

2)螺旋形管桩螺距。Park[

12]对200、500 mm螺距的能源桩进行了热性能测试,结果表明,较小的螺距提供了较大的换热面积。因此,螺距越小,线圈总换热率越大。但由于管间距离过小会引起管间热流的相互干[13],单位管长换热率反而会降低。有学者提出在换热管出水口下方添加保温层,以减少换热管的热干扰和热耗[14],但保温层的长期工作性能和服役寿命仍有待研究。

3)循环介质流速。在流速水平较低时,流体流动状态近似层流,换热率很低。此时增大流体流速会使流体与管壁的对流换热系数提高,换热量增加,换热率明显提高。但流速增加到一定值后,由于流体在管内的换热时间缩短,换热不充分,换热率反而降[

15]。因此,管内介质的流速不宜过高或过低,一般认为只需确保其流动状态为湍流即可。

4)进水口温度。若无外界因素干扰,进口温度主要由当地气温决定。由式(1)可知,进口温度直接影响热交换时进出口液体的温度差,温差越大,热量传导的动力越强,换热率越高。相关研究表明,在一定范围内换热率随进口温度升高近似呈线性增[

8-9]

1.2 桩体传热性能

混凝土热物性和桩体几何尺寸是制约桩体内导热特性的主要因素。混凝土是桩身与土进行热交换的介质,其传热性能通过导热系数来衡量。研究表明,当混凝土导热系数从1.2 W/(m·K)增加到2.5 W/(m·K)时,能源桩的传热性能可提高42% [

16]。实际工程中,提高混凝土导热系数的同时往往要保证其力学性能,通常,合理的做法是在混凝土中加入一些导热系数较高的水泥掺合料(如钢纤维、石墨等)来实现。在一定范围内,桩长和桩径的增加也有利于增大传热面积,提升传热性[15]。如桩径由0.5 m增加到0.7 m时,桩传热性能显著提高,但桩径增长到一定值后,换热性能变化不明[16]。对桩的规格进行合理规划设计要综合考虑桩体传热、承载特性及成本等要素。但截至目前,能源桩的规划设计仍主要依据过往项目经验,关于桩体传热特性的定量分析仍有待深入。

1.3 土的传热性能

1.3.1 含水率

总的来看,适当增加含水率有利于增强土壤的储热和传热能力。一方面,随着含水率的增加,一部分孔隙被水填充,显著提高了土壤比热容,增强了地面对冷能(热能)的储存能[

17]。另一方面,虽然在含水率水平较低时,土粒表面只覆盖了一层水膜,对导热系数影响不大,但随着含水率的增加,土粒间产生“水桥”效应,原本由空气传导的部分热量转为由导热系数更大的水分传[18],使得土体整体导热性能增强。因此,非饱和土的导热系数与含水率成正相关。但对于饱和土,如果含水率过高,土粒间相互接触产生的热传导效应弱化,导热系数可能反而降[17]

1.3.2 矿物成分、干密度

土壤固相对导热系数的影响可以通过土的矿物成分和干密度进行分析。不同土矿物成分导热系数有明显差别,如石英的导热系数约为7~9 W/(m∙K),而云母、高岭石及长石约2~3 W/(m∙K)。为了量化由不同矿物成分组合而成的土粒的导热系数,Johansen[

19]提出将土中矿物划分为两类:石英和其他矿物。按照石英的含量(体积分数20%为界限)分情形计算土体导热系数。该方法计算简便,有一定合理性,但未能考虑土体各组分的空间分布,同时,由于质地不纯、干密度及测量方法的不同,同类矿物测量所得的导热系数也有所差异,因此,土体综合计算结果与实际有一定误差。

土的干密度越大,其单位体积的孔隙就越少,即孔隙率越小。土壤中气体主要以自由态存在于土壤的孔隙中,极少部分以吸附态吸附在土壤颗粒表面或以溶解态溶解在水中。总体而言,土壤固体颗粒形状、结构和排列方式决定孔隙性状、尺寸和分布,进而影响导热系[

20-21]。随着干密度增大,土壤固体颗粒的接触面积增加,土的有效导热系数更接近于土粒的固体导热系数,故导热系数的增大,如图2[22]。另外,测试表明,土壤试样的尺寸对导热系数的影响不大,故可以用现场试验代替室内试[23]

图2  不同含水率的砂土/黏壤土导热系数与干密度的关[

22]

Fig. 2  Relationship between thermal conductivity and dry density of sandy/clay loam with different moisture content[

22]

1.4 长期换热性能

地表以下10 m内的地温受太阳辐射和季节性天气循环的影响,深度大于10 m时,土壤温度保持相对恒定,有利于持续的热交[

24]。在夏季,浅层地表平均温度低于气温,可通过热交换为地表建筑散热;相反,冬季的地层温度高于气温,夏季储存在地下的热量被提取并用于加热。但是,若四季中制冷/制热需求不均,桩周土体的热量不断累积,土温无法自然恢复到初始温度,将影响之后的周期性热循环。通过在地源热泵系统上配备太阳能集热器或冷却设备对地温进行补偿,可在一定程度上缓解热泵系统内部的能量失衡,但成本较高,对场地环境也有一定要[25]

2 传热模型

在地源热泵系统中,热辐射传导的热量忽略不计,主要由热传导和热对流产生传热作用。一般来说,桩—土间的传热方式主要为热传导,但如果土层中存在丰富的地下水流动参与换热,换热方式将以热对流为主。地下换热器的传热模型是发展地源热泵系统的前提,一个准确而恰当的模型能为系统的整个传热过程提供有效的预测和指导。

2.1 线热源模型

线热源模型将桩—土间的传热过程简化为以一个无限长的恒定热流密度的热源为中心,以辐射状向外传热。线热源模型可分为无限长线热源模型与有限长线热源模型。Mogensen于1983年提出了无限长线热源模型的解析解。在此基础上,Eskilson于1987年提出了有限长热源模型,该模型能更好地描述地源热泵系统埋地部分长时间运行状况下的传热过程。Zeng[

26]在前人基础上进一步推导了有限长线热源半无限介质的瞬时温度响应解析解。

2.2 圆柱热源模型

圆柱热源模型分为空心和实心两类。王子阳[

27]考虑了土层间的热物性差异,将不同土层的埋管换热器简化为分层空心圆柱面热源,建立了考虑土壤分层的有限长圆柱热源模型。空心圆柱热源模型将热源简化为圆柱面,从几何维度上讲,比线热源更为先进。而实心圆柱模型将热源简化为三维圆柱体,其主要针对的是直径大、钻孔深度较浅且换热管密集盘布于桩周的螺旋管桩。Man[28]提出了考虑桩体热容的一维和二维实心圆柱热源模型。一维模型形式简单,但其忽略了轴向热流;二维模型则考虑了轴向传热和热流边界条件的影响,适用性更强但计算更为复杂。

2.3 存在地下水条件下的传热模型

一般认为,地下水的存在对能源桩传热性能有积极影响。地下水位(土中孔隙的位面和饱和水分的位面之间的分界线)以下的水分在土层颗粒之间移动,形成水平流,而水平流可以降低桩周土温度,缓解地层冷热积累,改善传热性能,最终使土温趋于稳定。笔者以时间为序整理了若干瞬态传热模型,如表2所示。

表2  存在地下水条件下的瞬态模型
Table 2  Transient model in the presence of groundwater
模型名称地面分层水平流均匀流有限介质轴向导热
Claesson有限线热源模[29]
Diao线热源模[30]
Fan 3D有限体积模[31]
Nelson移动有限线源模[32]
Lee 3D有限差分模型(3DFDMGA)[33]
Rivera 拓展MSLF模[34]
Hu地面分层的地下水流动模[35]
Zhang螺旋热源模[36]

3 能源桩的结构响应

3.1 桩—土作用机制

3.1.1 桩基轴力变化趋势

与常规桩基础不同,承载时能源桩,与外界发生持续的换热作用,产生额外温度载荷。热量的转移将改变桩体温度,使桩体膨胀(收缩)。受限于桩周围岩土体的约束,桩基无法发生自由变形,在桩内部会产生额外的温度应力。实际工程中,能源桩的桩型大多是摩擦桩,桩周土体施加的摩阻力和桩端约束力与外力相平衡。Amatya[

37]将能源桩假设为可受热产生线性膨胀的杆,其应力分为热载荷引起的热应力和常规载荷引起的机械应力(见图3)。当桩身温度升高时,桩体膨胀,受桩周约束限制,轴向应力增大;桩上部相对于土体向上运动,故受到向下的负摩阻力。桩下部相对土体向下运动,故受到向上的摩阻力(见图3(a))。当温度降低时,桩身收缩,桩体轴向应力相应减小;桩上部相对土体向下运动,故受到的摩阻力向上,桩下部相对土体向上运动,故受到的摩阻力向下(见图3(c))。温度与上覆载荷同时作用时的轴力状态如图3(b)、(d)所示。对于端承型能源桩,温度荷载下的应力和位移均表现为热弹性,未观察到明显的热塑性变形,故温度对其力学性能影响不[38]

(a)  升温工况下的应力

(b)  升温+上覆载荷工况下的应力

(c)  降温工况下的应力

(d)  降温+上覆载荷工况下的应力

图3 有温度载荷作用时桩基轴力分[

37]

Fig. 3 Axial force distribution of the energy pile under temperature loading[

37]

一般来说,上覆载荷水平较低时,随着摩阻力的积累,轴向应力逐渐减小,到达一定深度后变为零,该零点处往下部分的应力水平主要受温度载荷影响。现场试验结果也证实了这一点。Laloui[

39]检测了能源桩单桩的受力情况,发现在温度载荷和上覆载荷同时作用下,温度对桩中下部的轴力影响较大,甚至会超过上覆载荷引起的应力。Bourne-Webb[40]也提出,冷热循环作用下引起的温度应力较大,在制冷时,即使存在结构上部载荷,桩身中下部也有可能出现拉应力。

影响能源桩应力和位移的主要因素包括上部荷载刚度、桩端土体刚度以及桩内埋管形式等。王成龙[

41]研究表明,随着机械载荷刚度的增加,桩体的温度—位移零点将上移,热应力随深度的增大而减小;相反,若桩端土体刚度增大,桩体的温度—位移零点将下移,热应力随深度增大而增大。桩内埋管形式也会影响桩体内部温度应力,王成龙[42]研究表明,加热时W型埋管形式桩体应力是螺旋型的1.6倍、单U型的2.4倍,制冷时分别为螺旋型和单U型的1.3倍和1.8倍。

3.1.2 桩周土体热—力耦合特性及影响

能源桩与土发生热传导,引起土体温度沿桩体径向变化,从而引起土体物理力学性质发生改变。从土的角度看,影响桩的承载力和性能的主要因素包括水—热耦合过程中土壤的热硬化、热诱导水流、超静孔隙水压力的发展和热固结后的体积变化。对于正常固结土,升温条件下塑性应变的硬化效应与等应力排水条件下边界面产生的软化效应相抵消,土体产生塑性压缩,塑性压缩变形远大于土体骨架热弹性膨胀变形,故总体表现为体积缩小。加热导致土体在孔隙水排出过程中发生固结,土粒之间结合更加紧密,抗剪强度增[

43-44],同时,孔隙压力逐步转变为由土粒骨架承担的有效应力,从而强化桩—土作用面处的侧摩阻力。高固结土体的骨架热胀效应较明显,塑性压缩变形不足以抵消热胀效应,最终表现为体积增加。其受孔隙水排出的影响很小,温度升高引起的超静水压力不易消散,故加热可能导致抗剪强度减小。

Yazdani[

45]通过模型试验研究了能源桩在饱和正常固结黏土中承受循环温度载荷时的孔隙水压力(PWP)及极限承载力的变化情况,见图4。由于跟桩基发生热传导,桩周土体温度和孔隙水压力都产生周期性变化,周期基本相同。热诱导引起的孔隙水压力的变化程度主要由黏土的加热和冷却速率及渗透性和压缩性决[46]。除了初始阶段孔隙水压力为正,往后基本处于负值(负压),究其原因,水分在温度梯度作用下发生定向迁移,使得土粒与孔隙水之间表现为吸力。此种吸力作用有:1)降低孔隙水平均压力,土体骨架承担的应力增加;2)由吸力引起的毛细现象使土颗粒表面产生进一步的黏结作用。结果表明,在热载荷作用下,由于桩—土界面内摩擦角和有效应力的提高,桩侧摩阻力与桩身轴力显著提高,但增加温度循环次数对桩身承载力影响不大。

图4  热循环状态下土的温度与孔隙压力呈周期性变[

45]

Fig. 4  The temperature and pore pressure of soil under thermal cycling state change periodically[

45]

对于不会发生固结或固结程度较低的砂土,温度变化引起的体积膨胀(收缩)很[

47],只需考虑土体骨架的热胀冷缩变形以及桩—土之间的变形差异引起的荷载重分配现象。Wang[48]通过现场试验对砂土地基中能源桩温度载荷作用下桩身承载力与位移变化趋势进行了研究,结果表明:在一个完整的温度循环结束后,桩端承载力没有损失,桩身尺寸基本恢复原状,表现出热弹性。Kramer[49]对在干砂状态下运行的能量桩进行研究发现,升温工况下极限承载力随着桩体的膨胀而增大。但在制冷时由于桩体的横向收缩,桩土间的水平土压力减小,侧摩阻力减小,桩体的承载力略微降[50]

3.2 桩基沉降

在岩土工程设计中往往需要考虑桩基沉降。过度的桩基均匀沉降使得建筑物高程降低,影响建筑正常使用,而不均匀沉降更会使建筑产生附加应力而引起裂缝,甚至局部构件断裂。桩体沉降由桩本身的弹性压缩和桩端土体压缩产生的桩端沉降组成。McCartney[

51]通过离心机缩尺试验表明,随着温度升高,桩体膨胀并且土体排水后抗剪强度增强,桩侧摩阻力得到强化,故相同载荷水平下,温度越高,桩端沉降量越小(见图5)。

图5  不同温度下桩端沉降量与轴向载荷的关[

51]

Fig. 5  Relationship between pile tip settlement and axial load at different temperatures[

51]

陆浩杰[

52]、孔纲强[53]、王成龙[54]、任连伟[55-56]通过对能源桩的长期运行状态进行监测,指出在工作载荷、温度载荷共同作用下,桩体内部产生少量残余应变导致桩体下沉,影响桩体稳定性;提出了考虑温度作用效应的桩—土摩擦系数的计算方法。另外,埋管形式对桩体沉降也有影[42],加热时W型埋管形式的桩基沉降量为单U型的1.8倍、螺旋型的1.6倍。在制冷时,W型埋管形式的桩体位移变化也最明显,为单U型的1.7倍。

3.3 群桩承载特性

对于群桩,温度荷载会引起桩群的内力重分布。随着附加沉降的累积,能源桩侧阻力及桩端阻力退化,导致常规桩的承载压力增大,可能导致基础失效。Peng[

57]和Rotta Loria[58]针对能源桩在群桩中的位置影响作用展开研究,结果表明,能源桩与承台之间的相互作用会改变能源桩的力学特性,非加热桩的力学特性也会受到影响;群桩效应会降低能源桩的换热效率;温度荷载一定时,能源桩与常规桩之间产生相互影响的主要原因是二者之间的不协调变形。Murphy[59]、Salciarini[60]对能源桩群桩的长期承载水平进行了研究,结果表明,群桩荷载重分布效应在热传导过程中早期达到峰值(此时换热桩与普通桩之间的温差最大),此后随着时间的推移逐渐减小,直至达到稳态;热轴向应力和位移在合理范围内。总之,能源桩的承载过程受到各种因素之间相互作用的影响,其承载特性是多因素条件下的综合反映。

3.4 岩土热-力耦合本构模型

热塑性效应在土体热机械响应中发挥着重要作用,非等温条件下的土体力学行为建模需要先进的弹塑性应力—应变理论框架。Hueckel[

61]基于实验结果提出了宏观热力学模型,首次引入了热塑性的概念。通过改进传统的剑桥模型,提出了屈服面的热收缩效应,给出了细粒土的热塑性本构模型,其中温度被视为变量,认为随着温度的升高,先期固结压力降低。但此模型无法描述一些特定的热—力学行为,如中等固结度的土体受热产生的不可逆热应变。据此,Modaressi[62]提出了黏性热塑性模型,用于检验先期固结压力随温度的变化趋势。之后,Laloui[63]给出了先期固结压力随温度变化的表达式,进一步提高了模型的有效性。Cui[64]增加了新的热屈服函数,以描述不同固结比下产生的不可恢复的热应变,进一步完善了Hueckel[61]提出的热塑性模型。中国对岩土热—力本构方面的研究还较少,Yao[65]、孔令明[66]提出了关于超固结土的等向应力—应变—时间关系式,并考虑了温度变化对黏土体积和强度参数的影响,建立了超固结土的热黏弹塑性本构模型。

3.5 桩体结构响应数值模拟

基于有限元方法的数值模型是除试验之外的有利补充。Rotta Loria[

67]对能源桩进行了热—水—力有限元耦合分析,提出了温度位移零点的概念。对于无上覆荷载时升温工况下的摩擦型能源桩,以温度位移零点为界,上下两侧产生变形。升温过程中,温度位移零点以上的侧摩阻力随深度增加,零点以下的侧摩阻力随深度减小。故温度位移零点也是附加热应力极值点,与Amatya[37]结论一致(见图3(a))。Di Donna[68]、Tsetoulidis[69]及Saggu[70]采用弹塑性模型模拟了能源桩的桩—土界面力学行为,指出热载荷对桩身应力和位移影响的严重程度与参与换热的能源桩数量以及桩与其周围土体热膨胀系数的相对值有关。费康[71-72]考虑了温度变化对土体力学性能的影响,模拟了黏土地基中能源桩的力学特性,指出上覆载荷越高,温度循环次数越多,桩顶累积沉降越大;采用双曲线模型模拟桩—土交界面上的力学行为,考虑群桩之间的相互作用,建立了能量桩群桩基础工作特性的简化分析方法。有限元方法考虑了材料的非线性及复杂的边界、荷载条件,但计算十分复杂,研究简便实用的能源桩工作特性简化分析方法对能源桩设计以及维护有重要意义。

4 综合讨论

4.1 传热模块讨论

4.1.1 传热性能讨论

传热性能是能源桩的核心性能,不少学者针对能源桩传热状态的影响因素做了大量研究。但总的来看,仍存在一些不足:

1)考虑到换热范围有限,能源桩的作用对象大多为低层建筑,因此,设计桩长一般不大。在一定土层深度范围内,土体温度梯度变化的范围有限。在寒冷地带,环境温度与土层温度相差较大,地源热泵热效率较高,因此,较为成功的地源热泵相关案例大都在偏冷地区;而在温度较高的地区,如热带和亚热带地区,地源热泵换热效率较低。作为地源热泵的特殊形式,能源桩在温暖地带的经济性值得探讨。

2)长期换热的稳定性是能源桩急需解决的问题。季节性负荷(冷暖季供暖与制冷需求不平衡导致的地层温度失衡)是影响能源桩长期换热性能的主要因素。在地下水丰富的区域,地下水的流动可在相当程度上缓解地层温度的失衡,而在无地下水区域,则需对土层进行一定程度的热量补偿,但有效的热量补偿形式有待设计和完善。

3)换热管长期承受循环介质的冲刷与腐蚀,其耐久性需引起重视。管体破损除了影响换热效率外,由于流体直接与桩体材料接触,还可能降低混凝土桩体的承载力和耐久性。此外,换热管的更替技术也有待研究。

4)换热管、桩间距布置不当将会产生热干扰现象,但关于二者对换热效率影响程度的量化研究仍有待深入。在此基础上,应结合工程实际,兼顾成本、结构安全等要素,优化基础设计,确保桩体换热与承载性能长期稳定。

4.1.2 传热模型讨论

无限长线热源模型运用于地源热泵系统将会受到一定的限制,计算结果与实际有一定偏离。原因在于该模型只是孤立地考虑单管传热,而对于管间的热干扰及运行时间对周围土体的影响都没有考虑。但由于该解析式简单易用,至今在地下换热器中的应用仍十分广泛。用有限长线热源模型可得稳态温度场,系统长时间运行后热源周边温度场趋于稳定,较之无限长线热源模型结果更为精确,但计算更为复杂。

空心圆柱热源模型考虑了钻孔实际形状的导热影响,比线热源模型更为完善。但当传热时间较短或圆柱体尺寸过大、回填材料及埋管的导热性不可忽视的时候,会与实际产生较大误差。实心圆柱模型主要针对螺旋埋管桩和时间步长较短的加热过程。该模型的解析解表达式简单,便于数值计算。有地下水存在的情形下,换热条件较为复杂,考虑水流流速、土体渗流特性及桩基轴向传热,提出瞬态热源模型,大大提高了能源桩传热模型的适用性。

除能源桩本身的几何构型外,影响建模准确度的因素还很多,如地面温度分布、土壤含水量及其热物性、地下水运动等。为简化分析过程,当前大多数模型都忽略了上述变量的影响。

从时间上看,地面温度是一个变量,时间跨度较长时,地温的变化不可忽略;从空间上看,地面温度场也并非均匀分布,水平与竖直方向的分布有所差异。常见的模型都将地表温度设为恒定(一般为0 ℃),但若地表温差形成的温度梯度过大时,将对模型的精确度造成相当程度的影响。

土壤含水率及其热物性与土壤的导热系数息息相关,当前主要通过假设土层为均匀介质,测试几种不同类型的天然土的导热系数,引入参数,按建议参数取值并保持不变,但实际上土的导热系数在不同类型的土和不同含水率下的连续变化很难通过参数取值进行预测,同时,热量的传递将引起土的渗透性和力学特性的改变,这种变化又反过来影响土的热物性。如何描述土的热物性是建立模型的挑战之一。

能源桩在含水地层的热交换可以看作是土颗粒与孔隙水的热传导、地下水运动时与桩及桩周土的热对流。整个过程是各因素相互耦合的瞬态过程,但当前主要用稳态模型进行模拟,有相当的局限性。另外,出于成本和操作难度的考量,实际工程中很难获取准确的水文地质信息。综上所述,各传热影响因素间的相互耦合十分复杂,仍存在很多亟待解决的问题。

4.2 结构热-力响应讨论

4.2.1 桩—土作用讨论

桩周土体的热响应对桩基承载力的影响是多方面的。温度变化引起桩体周期性的胀缩变形,改变了桩—土接触状态。可近似认为桩周土承受了循环剪切作用,桩—土接触应力可能随桩体温度循环而逐渐衰减,使桩侧摩阻力减小,不断弱化桩基的承载性能。另外,对于黏性土而言,热循环作用影响了土体的胀缩特性,使桩体产生刚性位移。热循环引起土中水分的定向迁移,使土体干缩/膨胀。温度变化将使土体产生弹性变形和塑性变形,温度升高时,同时存在弹性和塑性变形, 塑性变形随着土超固结度的增大而减小;温度降低时,则只有弹性变形。循环干缩/膨胀会使黏性土颗粒的集聚和排列方式发生变化,从而引起土体微观结构的改变。在早期的干湿循环中,由于土体结构连结效果减弱,土体胀缩特性较为敏感。随着循环次数的增加,达到某种平衡状态,土体的循环胀缩特性趋于稳定,但由于存在塑性变形,胀缩过程并不完全可逆。

4.2.2 结构响应模型讨论

区别于常规桩基,能源桩在热—力耦合下的承载特性有明显区别。桩基与土体存在热物性上的显著差异,在温度作用下会产生不同程度的热胀冷缩变形,使桩周土体对桩体的约束产生变化,桩土界面法向接触应力随之改变。目前提出的模型主要基于荷载传递法,即假设应力与位移的传递函数(主要为折线、双曲线模型及指数模型等),预估温度位移零点位置,将桩体单元由温度变化引起的变形作为变量,以桩体整体平衡条件作为控制方程,通过迭代计算得到桩的侧摩阻力及桩端阻力。但传统荷载传递模型不能反映桩—土界面加/卸载循环剪切性状和桩—土界面反向加载时的残余位移,也不能反映桩侧土体固结过程中桩—土界面法向应力递增时桩—土界面的剪切力学特性。上述传递函数均未考虑温度变化对土体力学行为和桩—土函数传递关系的影响,尤其对力学性质随温度有明显变化的黏性土来说,模型的有效性需要验证。模型还需要关注到土壤的热—力耦合效应,而当前考虑热效应的土壤本构模型比较复杂,再叠加能源桩的循环温度荷载,实际的桩—土工作状态的描述仍有待探讨。同时,考虑循环温度荷载、群桩效应、桩端约束形式和间歇运行等因素的桩基计算也是未来研究的重、难点。

5 结论与展望

针对开发利用地热能的迫切需求,深入分析了能源桩传热及承载特性,描述了传热效率的影响因素,介绍了桩基结构响应,阐述了传热模型和荷载传递模型的研究现状并进行了综合评价。

1)传热影响因素方面,当前研究主要集中在换热管管型和布置形式、流体温度和流速以及桩身和土体导热系数等宏观层面,笔者认为后续的研究应更多地考虑微观层面,如液—桩—土间的接触状态、桩身材料、桩周土颗粒形态和颗粒间的接触形式等,以传热学为基础,对能源桩传热全过程进行理论及试验分析,从根本上了解各因素对能源桩换热性能的影响。

2)传热模型方面,当前主流的模型皆以直线形、圆柱形热源模型为基础,二者有着各自的适用性和局限性,需视情况进行选取。考虑地温边界、土壤热物性变化和地下水等条件的模型尚待提出和完善,同时应更加注重原位试验,以验证模型的准确性。

3)结构响应方面,研究表明,温度应力作用下,桩基承载力会有一定衰减,但具体机理并不十分清楚。应从桩—土热交换本质入手,考虑桩—土接触机理和土的自然历史条件等因素,全面评估热交换对承载能力的影响。

参考文献

1

江泽民. 对中国能源问题的思考[J]. 上海交通大学学报, 2008, 42(3): 345-359. [百度学术] 

JIANG Z M. Reflections on energy issues in China [J]. Journal of Shanghai Jiao Tong University, 2008, 42(3): 345-359. (in Chinese) [百度学术] 

2

刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176-181. [百度学术] 

LIU H L, KONG G Q, NG W W C, Applications of energy piles and technical development of PCC energy piles [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176-181. (in Chinese) [百度学术] 

3

YOON S, LEE S R, XUE J F, et al. Evaluation of the thermal efficiency and a cost analysis of different types of ground heat exchangers in energy piles [J]. Energy Conversion and Management, 2015, 105: 393-402. [百度学术] 

4

LUO J, ZHAO H F, GUI S Q, et al. Thermo-economic analysis of four different types of ground heat exchangers in energy piles [J]. Applied Thermal Engineering, 2016, 108: 11-19. [百度学术] 

5

JALALUDDIN, MIYARA A, TSUBAKI K, et al. Experimental study of several types of ground heat exchanger using a steel pile foundation [J]. Renewable Energy, 2011, 36(2): 764-771. [百度学术] 

6

FLORIDES G A, CHRISTODOULIDES P, POULOUPATIS P. An analysis of heat flow through a borehole heat exchanger validated model [J]. Applied Energy, 2012, 92: 523-533. [百度学术] 

7

FLORIDES G A, CHRISTODOULIDES P, POULOUPATIS P. Single and double U-tube ground heat exchangers in multiple-layer substrates [J]. Applied Energy, 2013, 102: 364-373. [百度学术] 

8

GAO J, ZHANG X, LIU J, et al. Numerical and experimental assessment of thermal performance of vertical energy piles: An application [J]. Applied Energy, 2008, 85(10): 901-910. [百度学术] 

9

GAO J, ZHANG X, LIU J, et al. Thermal performance and ground temperature of vertical pile-foundation heat exchangers: A case study [J]. Applied Thermal Engineering, 2008, 28(17/18): 2295-2304. [百度学术] 

10

ZARRELLA A, DE CARLI M, GALGARO A. Thermal performance of two types of energy foundation pile: Helical pipe and triple U-tube [J]. Applied Thermal Engineering, 2013, 61(2): 301-310. [百度学术] 

11

ZARRELLA A, CAPOZZA A, DE CARLI M. Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison [J]. Applied Energy, 2013, 112: 358-370. [百度学术] 

12

PARK S, LEE D, CHOI H J, et al. Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger) [J]. Energy, 2015, 81: 56-66. [百度学术] 

13

YOU T, LI X T, CAO S L, et al. Soil thermal imbalance of ground source heat pump systems with spiral-coil energy pile groups under seepage conditions and various influential factors [J]. Energy Conversion and Management, 2018, 178: 123-136. [百度学术] 

14

LI X Y, LI T Y, QU D Q, et al. A new solution for thermal interference of vertical U-tube ground heat exchanger for cold area in China [J]. Geothermics, 2017, 65: 72-80. [百度学术] 

15

CECINATO F, LOVERIDGE F A. Influences on the thermal efficiency of energy piles [J]. Energy, 2015, 82: 1021-1033. [百度学术] 

16

CAROTENUTO A, MAROTTA P, MASSAROTTI N, et al. Energy piles for ground source heat pump applications: Comparison of heat transfer performance for different design and operating parameters [J]. Applied Thermal Engineering, 2017, 124: 1492-1504. [百度学术] 

17

苏天明, 刘彤, 李晓昭, . 南京地区土体热物理性质测试与分析[J]. 岩石力学与工程学报, 2006, 25(6): 1278-1283. [百度学术] 

SU T M, LIU T, LI X Z, et al. Test and analysis of thermal properties of soil in Nanjing district [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1278-1283. (in Chinese) [百度学术] 

18

刘晨晖, 周东, 吴恒. 土壤热导率的温度效应试验和预测研究[J]. 岩土工程学报, 2011, 33(12): 1877-1886. [百度学术] 

LIU C H, ZHOU D, WU H. Measurement and prediction of temperature effects of thermal conductivity of soils [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886. (in Chinese) [百度学术] 

19

JOHANSEN O. Thermal conductivity of soils[R]. Defense Technical Information Center, 1977. [百度学术] 

20

CAI S S, ZHANG B X, CUI T F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil [J]. International Journal of Refrigeration, 2019, 98: 171-181. [百度学术] 

21

SMITS K M, SAKAKI T, LIMSUWAT A, et al. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles [J]. Vadose ZoneJournal, 2010, 9(1): 172-180. [百度学术] 

22

ABU-HAMDEH N H, REEDER R C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter [J]. Soil Science Society of America Journal, 2000, 64(4): 1285-1290. [百度学术] 

23

张延军, 于子望, 黄芮, . 岩土热导率测量和温度影响研究[J]. 岩土工程学报, 2009, 31(2): 213-217. [百度学术] 

ZHANG Y J, YU Z W, HUANG R, et al. Measurement of thermal conductivity and temperature effect of geotechnical materials [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 213-217. (in Chinese) [百度学术] 

24

FLORIDES G A, KALOGIROU S A. Annual ground temperature measurements at various depths [J]. Proceedings of CLIMA 2005, Lausanne,Switzerland. [百度学术] 

25

FAIZAL M, BOUAZZA A. Effect of forced thermal recharging on the thermal behaviour of a field scale geothermal energy pile [M].Energy Geotechnics. Boca Rotan: CRC Press, 2016: 557-568. [百度学术] 

26

ZENG H Y, DIAO N R, FANG Z H. A finite line-source model for boreholes in geothermal heat exchangers [J]. Heat Transfer, 2002, 31(7): 558-567. [百度学术] 

27

王子阳, 邵卫云, 张仪萍. 考虑土壤分层的地源热泵圆柱面热源模型[J]. 浙江大学学报(工学版), 2013, 47(8): 1338-1345. [百度学术] 

WANG Z Y, SHAO W Y, ZHANG Y P. Cylindrical surface model of ground source heat pump considering soil stratification [J]. Journal of Zhejiang University (Engineering Science), 2013, 47(8): 1338-1345. (in Chinese) [百度学术] 

28

MAN Y, YANG H X, DIAO N R, et al. A new model and analytical solutions for borehole and pile ground heat exchangers [J]. International Journal of Heat and Mass Transfer, 2010, 53(13/14): 2593-2601. [百度学术] 

29

CLAESSON J. HELLSTROM G. Analytical studies of the influence of regional groundwater flow on the performance of borehole heat exchangers [C]// Procin. of the 8th International Conference on Thermal Energy Storage, Terrastock, 2000. [百度学术] 

30

DIAO N R, LI Q Y, FANG Z H. Heat transfer in ground heat exchangers with groundwater advection[J]. International Journal of Thermal Sciences, 2004, 43(12): 1203-1211. [百度学术] 

31

FAN R, JIANG Y Q, YAO Y, et al. A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection[J]. Energy, 2007, 32(11): 2199-2209. [百度学术] 

32

MOLINA-GIRALDO N, BLUM P, ZHU K, et al. A moving finite line source model to simulate borehole heat exchangers with groundwater advection [J]. International Journal of Thermal Sciences, 2011, 50(12): 2506-2513. [百度学术] 

33

LEE C K, LAM H N. A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow [J]. Energy, 2012, 47(1): 378-387. [百度学术] 

34

RIVERA J A, BLUM P, BAYER P. Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers [J]. Applied Energy, 2015, 146: 421-433. [百度学术] 

35

HU J Z. An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow [J]. Applied Energy, 2017, 202: 537-549. [百度学术] 

36

ZHANG W K, ZHANG L H, CUI P, et al. The influence of groundwater seepage on the performance of ground source heat pump system with energy pile [J]. Applied Thermal Engineering, 2019, 162: 114217. [百度学术] 

37

AMATYA B L, SOGA K, BOURNE-WEBB P J, et al. Thermo-mechanical behaviour of energy piles[J]. Géotechnique, 2012, 62(6): 503-519. [百度学术] 

38

MCCARTNEY J S, MURPHY K D. Strain distributions in full-scale energy foundations (DFI Young professor paper competition 2012) [J]. DFI Journal - the Journal of the Deep Foundations Institute, 2012, 6(2): 26-38. [百度学术] 

39

LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763-781. [百度学术] 

40

BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles [J]. Géotechnique, 2009, 59(3): 237-248. [百度学术] 

41

王成龙, 刘汉龙, 孔纲强, . 不同刚度约束对能量桩应力和位移的影响研究[J]. 岩土力学, 2018, 39(11): 4261-4268. [百度学术] 

WANG C L, LIU H L, KONG G Q, et al. Influence of different stiffness constraints on stress and displacement of energy piles [J]. Rock and Soil Mechanics, 2018, 39(11): 4261-4268. (in Chinese) [百度学术] 

42

王成龙, 刘汉龙, 孔纲强, . 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学, 2017, 34(1): 85-91. [百度学术] 

WANG C L, LIU H L, KONG G Q, et al. Model tests on thermal mechanical behavior of energy piles influenced with heat exchangers types [J]. Engineering Mechanics, 2017, 34(1): 85-91. (in Chinese) [百度学术] 

43

DONNA A D, FERRAN A, LALOUI L, Experimental investigations of the soil-concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures [J]. Canadian Geotechnical Journal, 2016, 53(4): 659-672. [百度学术] 

44

XIAO S G, SULEIMAN M T, MCCARTNEY J S. Shear behavior of silty soil and soil-structure interface under temperature effects [C]//Geo-Congress 2014. February 23-26, 2014, Atlanta, Georgia. Reston, VA, USA: American Society of Civil Engineers, 2014: 4105-4114. [百度学术] 

45

YAZDANI S, HELWANY S, OLGUN G. Investigation of thermal loading effects on shaft resistance of energy pile using laboratory-scale model [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019043. [百度学术] 

46

FUENTES R, PINYOL N, ALONSO E. Effect of temperature induced excess porewater pressures on the shaft bearing capacity of geothermal piles [J]. Geomechanics for Energy and the Environment, 2016, 8: 30-37. [百度学术] 

47

DEMARS K R, CHARLES R D. Soil volume changes induced by temperature cycling [J]. Canadian Geotechnical Journal, 1982, 19(2): 188-194. [百度学术] 

48

WANG B, BOUAZZA A, SINGH R M, et al. Posttemperature effects on shaft capacity of a full-scale geothermal energy pile [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 04014125. [百度学术] 

49

KRAMER C, BASU P. Performance of a model geothermal pile in sand [M]//ICPMG2014-Physical Modelling in Geotechnics. Perth (Gaudin, C. & White, D.(eds)). Leiden: CRC Press, 2013: 771-777. [百度学术] 

50

OLGUN C G, OZUDOGRU T Y, ARSON C F. Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile-soil interface [J]. Géotechnique Letters, 2014, 4(3): 170-178. [百度学术] 

51

MCCARTNEY J S, ROSENBERG J E. Impact of heat exchange on side shear in thermo-active foundations [C]//Geo-Frontiers Congress 2011. March 13-16, 2011, Dallas, Texas, USA. Reston, VA, USA: American Society of Civil Engineers, 2011: 488-498. [百度学术] 

52

陆浩杰, 吴迪, 孔纲强, . 循环温度作用下饱和黏土中摩擦型桩变形特性研究[J]. 工程力学, 2020, 37(5): 156-165. [百度学术] 

LU H J, WU D, KONG G Q, et al. Displacement characteristics of friction piles embedded in saturated clay subjected to thermal cycles [J]. Engineering Mechanics, 2020, 37(5): 156-165. (in Chinese) [百度学术] 

53

孔纲强, 王成龙, 刘汉龙, . 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38(4): 958-964. [百度学术] 

KONG G Q, WANG C L, LIU H L, et al. Analysis of pile head displacement of energy pile under repeated temperature cycling [J]. Rock and Soil Mechanics, 2017, 38(4): 958-964. (in Chinese) [百度学术] 

54

王成龙, 刘汉龙, 孔纲强, . 工作荷载下温度循环对桩基变形与应力的影响分析[J]. 岩土力学, 2016, 37(Sup1): 317-322. [百度学术] 

WANG C L, LIU H L, KONG G Q, et al. Influence of circular temperature on the strain and stress of energy piles under a working load [J]. Rock and Soil Mechanics, 2016, 37(Sup1): 317-322. (in Chinese) [百度学术] 

55

任连伟, 任军洋, 孔纲强, . 冷热循环下PHC能量桩热力响应和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536,546. [百度学术] 

REN L W, REN J Y, KONG G Q, et al. Field tests on thermo-mechanical response and bearing capacity of PHC energy pile under cooling-heating cyclic temperature [J]. Rock and Soil Mechanics, 2021, 42(2): 529-536,546. (in Chinese) [百度学术] 

56

任连伟, 徐健, 孔纲强, . 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报, 2019, 41(11): 2053-2060. [百度学术] 

REN L W, XU J, KONG G Q, et al. Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2053-2060. (in Chinese) [百度学术] 

57

PENG H F, KONG G Q, LIU H L, et al. Thermo-mechanical behaviour of floating energy pile groups in sand [J]. Journal of Zhejiang University-SCIENCE A, 2018, 19(8): 638-649. [百度学术] 

58

ROTTA LORIA A F, LALOUI L. Thermally induced group effects among energy piles [J]. Géotechnique, 2017, 67(5): 374-393. [百度学术] 

59

MURPHY K D, MCCARTNEY J S. Seasonal response of energy foundations during building operation[J]. Geotechnical and Geological Engineering, 2015, 33(2): 343-356. [百度学术] 

60

SALCIARINI D, RONCHI F, CATTONI E, et al. Thermomechanical effects induced by energy piles operation in a small piled raft [J]. International Journal of Geomechanics, 2015, 15(2): 04014042. [百度学术] 

61

HUECKEL T, BORSETTO M. Thermoplasticity of saturated soils and shales: Constitutive equations [J]. Journal of Geotechnical Engineering, 1990, 116(12): 1765-1777. [百度学术] 

62

MODARESSI H, LALOUI L. A thermo-viscoplastic constitutive model for clays [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1997, 21(5): 313-335. [百度学术] 

63

LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: An isotropic yield mechanism [J]. Computers and Geotechnics, 2003, 30(8): 649-660. [百度学术] 

64

CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays [J]. Canadian Geotechnical Journal, 2000, 37(3): 607-620. [百度学术] 

65

YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elastoviscoplastic constitutive model for clays[J]. Journal of Engineering Mechanics, 2015, 141(6): 04014162. [百度学术] 

66

孔令明, 姚仰平. 超固结土热黏弹塑性本构关系[J]. 岩土力学, 2015, 36(Sup1): 1-8. [百度学术] 

KONG L M, YAO Y P. Thermo-visco-elastoplastic constitutive relation for overconsolidated clay [J]. Rock and Soil Mechanics, 2015, 36(Sup1): 1-8. (in Chinese) [百度学术] 

67

ROTTA LORIA A F, GUNAWAN A, SHI C, et al. Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads [J]. Geomechanics for Energy and the Environment, 2015, 1: 1-15. [百度学术] 

68

DI DONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 861-888. [百度学术] 

69

TSETOULIDIS C, NASKOS A, GEORGIADIS K. Numerical investigation of the mechanical behaviour of single energy piles and energy pile groups [M].Energy Geotechnics: CRC Press, 2016: 569-575. [百度学术] 

70

SAGGU R, CHAKRABORTY T. Thermomechanical response of geothermal energy pile groups in sand [J]. International Journal of Geomechanics, 2016, 16(4): 04015100. [百度学术] 

71

费康, 钱健, 洪伟, . 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2651-2661. [百度学术] 

FEI K, QIAN J, HONG W, et al. Numerical analysis of mechanical properties of energy piles in clay foundation[J]. Rock and Soil Mechanics, 2018, 39(7): 2651-2661. (in Chinese) [百度学术] 

72

费康, 戴迪, 洪伟. 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80,90. [百度学术] 

FEI K, DAI D, HONG W. Study on simplified analysis method of working characteristics of energy pile group[J]. Rock and Soil Mechanics, 2019, 40(1): 70-80,90. (in Chinese) [百度学术]