摘要
随着塑料制品的大规模使用,土壤环境中微塑料含量不断增加,土壤中微塑料的污染问题已引起广泛关注。目前,缺乏标准化的检测和定量方法是阻碍评估其对土壤环境生态产生风险的主要因素。复杂土壤介质中微塑料的检测方法仍然没有同质化,这严重影响了研究结果的可比性和可靠性。采用微波消解法,通过优选微波消解最佳操作条件(酸体系、升温程序及加酸量),尝试从复杂土壤介质中一次性提取微塑料。结果表明:采用15 mL HCl+5 mL HNO3+3 mL HF的酸体系可将0.1 g的土壤完全消解并从中提取出微塑料。在加标试验中发现,6种微塑料聚苯乙烯(PS)、聚乙烯(PE)、聚对苯二甲酸乙二酯(PET)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯(PP)提取效率分别为126%、146%、51%、85%、96%、162%。PS、PE、PP塑料消解后质量均变重,可能是因为酸与微塑料发生了物理化学反应,使其表面性质发生改变,从而导致消解后微塑料的孔隙度增大,对金属或有机物吸附能力增强;PMMA、PVC在该条件下的提取效率较好,可达到80%以上。通过对塑料表面形貌的分析发现,所有方法中塑料颗粒都有降解的迹象,但通过分析傅里叶红外光谱(FTIR)结果发现,消解过程不影响塑料种类的识别。目前的方法还只适用于定性和初步定量分析,标准化定量还需进一步探索。
塑料因其优异的性能和低成本而广泛应用于生产和日常生活
然而,对于土壤中MPs的提取和定量,目前还没有一致的标准,亟需一种简便有效的方法来表征复杂土壤介质中微塑料的含量。从固体基质中提取微塑料的大部分研究是关于水生沉积物的,最常见的是通过密度分离法来提取微塑
微波消解是一种适用于基体范围较宽的环境样品预处理方法,目前已用于大气颗粒物、地表水、废水、土壤、垃圾、煤飞灰、淤泥、沉积物、污水悬浮物等环境样品。微波消解法改进了传统消解方法的弊端,从整体上提高了环境分析的速度和质量。微波辅助提取法能更快预处理样品。事实上,在传统加热消解过程中,在将热量传递到溶液中之前,需要一段特定的时间来加热容器,而微波消解法则可以直接加热溶
笔者通过应用微波消解法研究一次性提取和定量土壤中MPs的有效方法。通过优化微波消解条件,用聚苯乙烯(PS)、聚乙烯(PE)、聚对苯二甲酸酯(PET)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯(PP)这6种具有代表性的微塑料进行试验,旨在开发更快、更便宜、更有效的在土壤中提取出微塑料的方法。
最终消解方案的确定从两个方面评估:1)优化选择去除或减少土壤矿物含量的有效消解方案;2)各消解方案对被测微塑料颗粒的影响。分别对消解前、后微塑料进行测试,同时进行程序空白,以识别基于化学处理的滤膜自身前后质量变化。微波消解方案的优化试验过程如

图1 微波消解方案优化路线
Fig. 1 Optimization route of microwave digestion scheme
测试的土壤样品均采用微塑料较少或几乎没有的土壤,采样时间均处于当地的旱季,并且采样点所在地两周内没有降水。用五点取样法在采样点的地块上选取5个采样位置,在每个采样位置用铁铲由上而下铲取30 cm深度的耕作层土壤样品1.0 kg。剔除土壤样品中的植物根系、石块和杂草等,然后选取湿润的自然状态下的土壤测定含水率。将剩余的土壤用浮选分离的方法分离出农田土壤样品中原有的微塑料,试验选用1:1的氯化钠和碘化钠混合溶液作为悬浮溶液进行浮选,再用溢出—离心法进行分离。将处理后的土壤样品在室温下风干装入铝盒保存,对土壤的基本理化性质进行测量。土壤质地为壤质黏土,含水率为28.3%,沙粒含量为32.6%,黏粒含量为40.9%,粉粒含量为26.5%,有机质含量为31.5 g/kg。
准确称取0.2 g风干、过筛土壤于消解罐中,用少量去离子水润湿,在防酸通风橱中向消解罐中分别加入方案a(6 HNO3+3 HCl+2 HF)mL、方案b(6 HCl+2 HNO3+2 HF)mL、方案c(6 HNO3+2 H2O2+2 HF)mL、方案d(6 HCl+2 HNO3)mL这4种混合酸溶液混匀,然后密封进行微波消解。设置程序升温(10 min上升至120 ℃保持10 min,然后再一次升温10 min至180 ℃保持30 min)进行消解,程序升温结束后冷却。待罐内温度降至室温后,打开消解罐,静置片刻,观察颜色及残渣情况,将消解罐中的溶液转移至聚四氟乙烯坩埚中,用纯水润洗消解罐,和盖子一并倒入坩埚中。用无油隔膜真空泵,通过0.45 μm玻璃纤维滤膜过滤。过滤后,将滤膜用纯水进行洗涤,把滤膜放置在45 ℃烘箱中烘干2 h,然后用精密天平称量。通过不断调整优化其加酸量、酸配比及升温程序等,选出最优的一次性消解土壤的方案。
首先,通过视觉观察对消解方案进行评估。然后,通过
(1) |
式中:为过滤后滤膜的干重;为过滤前干燥滤膜的重量;BM为初始土壤样品质量。
从一系列塑料产品中选择试验所用的6种微塑料PP、PS、PET、PVC、PE、PMMA。PP取自塑料焊条,PS取自一次性塑料甜品叉子,PET取自普通塑料果汁瓶,PMMA取自普通彩色亚克力板材,PE取自塑料藤条,测试的塑料颗粒均用高通量的球磨仪进行研磨。所有颗粒都经过金属筛进行筛分,以确保微塑料颗粒小于500 μm。并准确称重0.1 g于消解罐中,加入酸溶液进行消解,每个不同塑料颗粒进行3次重复试验,消解完成后,用超纯水过滤清洗微塑料,放入烘箱中,在45° C烘箱中烘干2 h,在分析天平上进行称重。
以农业用地土壤为样品,采用优化的微波消解方案提取农业土壤中的微塑料,准确称取10份土壤样品,(每份0.1 g)于消解罐中,设置选定的升温程序(10 min上升至120 ℃保持5 min,10 min继续上升至160 ℃保持5 min,再一次升温至180 ℃保持10 min)进行微波消解,消解完成后将10份样品过滤到同一张滤膜上,称取过滤后干燥滤膜的质量,即1 g农田土壤中所含微塑料的含量。
通过优化微波消解条件,分别对土壤和聚合物塑料颗粒进行消解,通过两阶段的消解结果选择消解方案。根据程序空白扣除化学处理引起的滤膜称重变化。
首先,初始选定的酸消解体系分别来源于国家标准以及文
方案 | 酸配比/mL | 升温程序 | 引用 |
---|---|---|---|
a | 6 HNO3+3 HCl+2 HF | 20 min上升到120 ℃保持5 min,10 min上升至180 ℃保持20 min。 | HJ 803-2017 |
b | 6 HCl+2 HNO3+2 HF | HJ 832-2017 | |
c | 6 HNO3+2 H2O2+2 HF | HJ 803-2016 | |
d | 6 HCl+2 HNO3 | HJ 680-2013 |

图2 4种酸消解体系的消解效率
Fig. 2 The digestion rate of four acid digestion systems
程序温度的优化:根据第1步微波消解的结果,选取方案a和方案b进行优化,调节升温程序进行试验。

图3 升温温度对土壤消解效率的影响
Fig. 3 Effect of temperature on soil digestion efficiency
元素 | 线类型 | 质量分数/% | 质量分数误差/% | 原子个数百分比/% |
---|---|---|---|---|
O | K线系 | 3.29 | 0.13 | 4.05 |
F | K线系 | 57.31 | 0.45 | 59.41 |
Mg | K线系 | 1.25 | 0.06 | 1.01 |
Al | K线系 | 27.14 | 0.24 | 19.81 |
K | K线系 | 1.17 | 0.06 | 0.59 |
Ca | K线系 | 0.87 | 0.06 | 0.43 |
C | K线系 | 8.97 | 0.65 | 14.70 |
总量 | 100.00 | 100.00 |
升温程序时长的优化:由

图4 消解时长对土壤消解效率影响
Fig. 4 Effect of digestion time on soil digestion efficiency
整体优化升温程序:不断优化升温程序,在升温程序的时间和温度上整体进行优化,结果发现,0.2 g的土壤在最优升温程序下土壤的消解效率达到了89.45%,显然0.2 g的土壤在最优升温程序下消解效率仍未达到100%。称取0.1 g土壤样品,进行程序升温优化,当升温程序为
操作步骤 | 工作时间/min | 工作温度/℃ | 功率/W |
---|---|---|---|
1 | 10 | 25~120 | 1 000 |
2 | 5 | 120 | 1 000 |
3 | 10 | 120~160 | 1 000 |
4 | 5 | 160 | 1 000 |
5 | 10 | 160~180 | 1 000 |
6 | 10 | 180 | 1 000 |
增加方案a和方案b的HF酸含量:由试验现象和EDS能谱分析猜测,消解过滤后的剩余物质可能是一些盐类物质,所以,加大HF酸量来进行优化,

图5 HF酸量对土壤消解效率的影响
Fig. 5 Effect of HF acid content on soil digestion efficiency
优化整体酸量:根据升温程序的优化方案对消解效率的影响进行比较,
方案 | 酸体系/mL | 土壤初重/g | 溶解液颜色 | 消解效率/% |
---|---|---|---|---|
1 | 4 HNO3+5 HF+1 H2O2 | 0.2 | 白色 | 56.00 |
2 | 5 HNO3+3 HF+2 H2O2 | 0.2 | 白色 | 59.00 |
3 | 6 HNO3+2 HF+2 H2O2 | 0.2 | 白色 | 61.00 |
4 | 6 HNO3+4 HF+2 H2O2 | 0.2 | 白色 | 66.66 |
5 | 8HNO3+2 HF +2 H2O2 | 0.2 | 白色 | 64.95 |
6 | 10 HNO3+5 HF+2 H2O2 | 0.2 | 白色 | 70.34 |
7 | 5 HNO3+5 HF+2 H2O2 | 0.2 | 淡黄色 | 73.00 |
8 | 5 HNO3+2.5 HF+2.5 HCl | 0.2 | 黄色 | 68.07 |
9 | 5 HNO3+3 HCl+2 HF | 0.2 | 淡黄色 | 70.05 |
10 | 5 HNO3+2 HCl+3 HF | 0.2 | 黄色 | 63.08 |
11 | 6 HNO3+2 HCl+2 HF | 0.2 | 黄色 | 65.00 |
12 | 6 HNO3+3 HCl+3 HF | 0.2 | 白色 | 69.40 |
13 | 6 HNO3+4 HCl+2 HF | 0.2 | 黄色 | 68.70 |
14 | 8 HNO3+3 HCl+1 HF | 0.2 | 黄色 | 66.80 |
15 | 9 HNO3+2 HCl+3 HF | 0.2 | 黄色 | 67.57 |
16 | 10 HNO3+5 HCl+5 HF | 0.2 | 白色 | 70.34 |
17 | 12 HNO3+6 HCl+4 HF | 0.2 | 黄色 | 79.40 |
18 | 15 HNO3+5 HCl+3 HF | 0.2 | 白色 | 74.50 |
19 | 6 HCl+2 HNO3+2 HF | 0.2 | 白色 | 76.00 |
20 | 9 HCl+3 HNO3+2 HF | 0.2 | 白色 | 77.14 |
21 | 9 HCl+3 HNO3+3 HF | 0.2 | 淡黄色 | 80.51 |
22 | 12 HCl+4 HNO3+3 HF | 0.2 | 白色 | 90.52 |
23 | 12 HCl+4 HNO3+4 HF | 0.2 | 黄色 | 91.33 |
24 | 12 HCl+4 HNO3+7 HF | 0.2 | 白色 | 92.10 |
25 | 15 HCl+5 HNO3+3 HF | 0.2 | 白色 | 94.50 |
26 | 15 HCl+5 HNO3+4 HF | 0.2 | 白色 | 91.08 |

(a) 0.15 g

(b) 0.1 g
图6 不同初始重量土壤消解前、后质量的变化
Fig. 6 Changes of soil mass before and after digestion with different initial weight

(a) PS

(b) PE

(c) PET

(d) PVC

(e) PMMA

(f) PP
图7 4种酸体系消解对微塑料质量的影响
Fig. 7 Effects of digestion of four acid systems on quality of MPs

(a) 单独微塑料

(b) 0.1 g土壤(0.01 g微塑料)
图8 微塑料提取效率
Fig. 8 Extraction efficiency of MPs

图9 消解前后6种聚合物的SEM图
Fig. 9 SEM images of the six polymers before and after digestion
图10为消解前、后6种微塑料的FTIR图。该百分比表示测试样品与标准光谱库(Hummel聚合物样品库和HRNicolet样品库)之间的匹配程度。与未处理的样品相比,6种微塑料光谱峰都发生了变化。通常,每种聚合物类型的红外光谱主要峰的变化被认为是光谱分析的主观标准,有研究已经证明,由结构重排或化学分解进行的聚合物降解会引起峰值强度的变

(a) PS

(b) PE

(c) PET

(d) PVC

(e) PMMA

(f ) PP
图10 消解前、后6种聚合物的FTIR图
Fig. 10 FTIR images of six polymers before and after digestion

图11 农业土壤消解后的微塑料电子显微镜图
Fig. 11 Electron microscopy of MPs after digestion in agricultural soil
随着微塑料在土壤中的不断累积,大量存在于土壤中的微塑料会对人类健康造成威胁。基于一种微波消解方法,证明0.1 g的土壤用15 mL HCl+5 mL HNO3+3 mL HF的酸体系可以完全消解并一次性有效提取出复杂土壤介质中的微塑料。同时,通过SEM和FTIR初步评估了微波消解方案对塑料的影响。结果表示,在消解前、后,微塑料峰强度在一定程度上有所减弱,但其特征峰还存在,不影响微塑料的识别。由此可见,微波消解法能用于对土壤微塑料的定性和初步定量分析,但标准化定量还需进一步探索。
参考文献
FRED-AHMADU O H, BHAGWAT G, OLUYOYE I, et al. Interaction of chemical contaminants with micro-plastics: Principles and perspectives [J]. Science of the Total Environment, 2020, 706: 135978. [百度学术]
SHARMA M D, ELANJICKAL A I, MANKAR J S, et al. Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons [J]. Journal of Hazardous Materials, 2020, 398: 122994. [百度学术]
CAO J H, ZHAO X N, GAO X D, et al. Extraction and identification methods of microplastics and nanoplastics in agricultural soil: A review [J]. Journal of Environmental Management, 2021, 294: 112997. [百度学术]
ROCHMAN C M. Microplastics research-from sink to source [J]. Science, 2018, 360(6384): 28-29. [百度学术]
HE D F, LUO Y M, LU S B, et al. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks [J]. TrAC Trends in Analytical Chemistry, 2018, 109: 163-172. [百度学术]
BERG PVAN DEN, HUERTA-LWANGA E, CORRADINI F, et al. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils [J]. Environmental Pollution, 2020, 261: 114198. [百度学术]
RADFORD F, ZAPATA-RESTREPO L M, HORTON A A, et al. Developing a systematic method for extraction of microplastics in soils [J]. Analytical Methods, 2021, 13(14): 1695-1705. [百度学术]
FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction [J]. Environmental Science & Technology, 2016, 50(11): 5774-5780. [百度学术]
ANDRADY A L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. [百度学术]
ALFONSO M B, ARIAS A H, RONDA A C, et al. Continental microplastics: Presence, features, and environmental transport pathways [J]. Science of the Total Environment, 2021, 799: 149447. [百度学术]
BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: Sources and sinks [J]. Environmental Science & Technology, 2011, 45(21): 9175-9179. [百度学术]
QADEER A, AJMAL Z, USMAN M, et al. Agricultural plastic mulching as a potential key source of microplastic pollution in the terrestrial ecosystem and consequences [J]. Resources Conservation and Recycling, 2021, 175: 105855. [百度学术]
COSTA J PDA, SANTOS P S M, DUARTE A C, et al. (Nano)plastics in the environment - Sources, fates and effects [J]. Science of the Total Environment, 2016, 566/567: 15-26. [百度学术]
IVAR DO SUL J A, COSTA M F. The present and future of microplastic pollution in the marine environment [J]. Environmental Pollution, 2014, 185: 352-364. [百度学术]
BANSAL M, SANTHIYA D, SHARMA J G. Behavioural mechanisms of microplastic pollutants in marine ecosystem: Challenges and remediation measurements [J]. Water, Air & Soil Pollution, 2021, 232(9): 1-22. [百度学术]
李鹏飞, 侯德义, 王刘炜, 等. 农田中的(微)塑料污染: 来源、迁移、环境生态效应及防治措施[J]. 土壤学报, 2021, 58(2): 314-330. [百度学术]
LI P F, HOU D Y, WANG L W, et al. (Micro)plastics pollution in agricultural soils: Sources, transportation, ecological effects and preventive strategies [J]. Acta Pedologica Sinica, 2021, 58(2): 314-330. (in Chinese) [百度学术]
WANG L, GAO Y X, JIANG W, et al. Microplastics with cadmium inhibit the growth of Vallisneria natans (Lour.) Hara rather than reduce cadmium toxicity [J]. Chemosphere, 2021, 266: 128979. [百度学术]
ZHANG B, YANG X, CHEN L, et al. Microplastics in soils: A review of possible sources, analytical methods and ecological impacts [J]. Journal of Chemical Technology & Biotechnology, 2020, 95(8): 2052-2068. [百度学术]
WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil [J]. Chemosphere, 2020, 254: 126791. [百度学术]
HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 2017, 586: 127-141. [百度学术]
NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin [J]. Environmental Science & Technology, 2016, 50(20): 10777-10779. [百度学术]
DÜMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method [J]. Chemosphere, 2017, 174: 572-584. [百度学术]
ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge [J]. Environmental Pollution, 2005, 138(2): 201-211. [百度学术]
ELERT A M, BECKER R, DUEMICHEN E, et al. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? [J]. Environmental Pollution, 2017, 231: 1256-1264. [百度学术]
BAYO J, OLMOS S, LÓPEZ-CASTELLANOS J. Assessment of microplastics in a municipal wastewater treatment plant with tertiary treatment: Removal efficiencies and loading per day into the environment [J]. Water, 2021, 13(10): 1339. [百度学术]
ALVIM C B, BES-PIÁ M A, MENDOZA-ROCA J A. Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants [J]. Chemical Engineering Journal, 2020, 402: 126293. [百度学术]
RUGGERO F, PORTER A E, VOULVOULIS N, et al. A highly efficient multi-step methodology for the quantification of micro-(bio)plastics in sludge [J]. Waste Management & Research, 2021, 39(7): 956-965. [百度学术]
BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources [J]. Science of the Total Environment, 2018, 612: 422-435. [百度学术]
HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment: A review of the methods used for identification and quantification [J]. Environmental Science & Technology, 2012, 46(6): 3060-3075. [百度学术]
ROCHA-SANTOS T, DUARTE A C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment [J]. TrAC Trends in Analytical Chemistry, 2015, 65: 47-53. [百度学术]
CAUWENBERGHE LVAN, DEVRIESE L, GALGANI F, et al. Microplastics in sediments: a review of techniques, occurrence and effects [J]. Marine Environmental Research, 2015, 111: 5-17. [百度学术]
ZHANG S L, YANG X M, GERTSEN H, et al. A simple method for the extraction and identification of light density microplastics from soil [J]. Science of the Total Environment, 2018, 616/617: 1056-1065. [百度学术]
SANCHEZ-PRADO L, GARCIA-JARES C, LLOMPART M. Microwave-assisted extraction: application to the determination of emerging pollutants in solid samples [J]. Journal of Chromatography A, 2010, 1217(16): 2390-2414. [百度学术]
NASAJL A, BIALE G, MATTONAI M, et al. Microwave-assisted solvent extraction and double-shot analytical pyrolysis for the quali-quantitation of plasticizers and microplastics in beach sand samples [J]. Journal of Hazardous Materials, 2021, 401: 123287. [百度学术]
BITENCOURT G R, MELLO P A, FLORES E M M, et al. Determination of microplastic content in seafood: An integrated approach combined with the determination of elemental contaminants [J]. The Science of the Total Environment, 2020, 749: 142301. [百度学术]
BESER M I, BELTRÁN J, YUSÀ V. Design of experiment approach for the optimization of polybrominated diphenyl ethers determination in fine airborne particulate matter by microwave-assisted extraction and gas chromatography coupled to tandem mass spectrometry [J]. Journal of Chromatography A, 2014, 1323: 1-10. [百度学术]
ZHANG X, YAN B, WANG X X. Selection and optimization of a protocol for extraction of microplastics from Mactra veneriformis [J]. Science of the Total Environment, 2020, 746: 141250. [百度学术]
周勇义, 谷学新, 范国强, 等. 微波消解技术及其在分析化学中的应用[J]. 冶金分析, 2004, 24(2): 30-36. [百度学术]
ZHOU Y Y, GU X X, FAN G Q, et al. Application of microwave digestion in analytical chemistry [J]. Metallurgical Analysis, 2004, 24(2): 30-36. (in Chinese) [百度学术]
朱锋, 胡星云, 郭照冰, 等. 快速消解测定土壤中金属元素[J]. 分析试验室, 2019, 38(8): 906-911. [百度学术]
ZHU F, HU X Y, GUO Z B, et al. Determination of heavy metals in soil by rapid digestion [J]. Chinese Journal of Analysis Laboratory, 2019, 38(8): 906-911. (in Chinese) [百度学术]
WANG N, XU T, WEI S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion [J]. Rock and Mineral Analysis, 2020, 39(1): 68-76. [百度学术]
王志超, 孟青, 李卫平, 等. 不同消解方法对微塑料质量及其表面特征的影响[J]. 环境工程学报, 2020, 14(5): 1385-1393. [百度学术]
WANG Z C, MENG Q, LI W P, et al. Effect of different digestion methods on microplastic quality and surface characteristics [J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1385-1393. (in Chinese) [百度学术]
CLAESSENS M, CAUWENBERGHE LVAN, VANDEGEHUCHTE M B, et al. New techniques for the detection of microplastics in sediments and field collected organisms [J]. Marine Pollution Bulletin, 2013, 70(1/2): 227-233. [百度学术]
AVIO C G, GORBI S, REGOLI F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat [J]. Marine Environmental Research, 2017, 128: 2-11. [百度学术]
KARAMI A, GOLIESKARDI A, CHOO C K, et al. A high-performance protocol for extraction of microplastics in fish [J]. Science of the Total Environment, 2017, 578: 485-494. [百度学术]
CORCORAN P L, BIESINGER M C, GRIFI M. Plastics and beaches: A degrading relationship [J]. Marine Pollution Bulletin, 2009, 58(1): 80-84. [百度学术]
MAŽEIKIENĖ R, STATINO A, KUODIS Z, et al. In situ Raman spectroelectrochemical study of self-doped polyaniline degradation kinetics [J]. Electrochemistry Communications, 2006, 8(7): 1082-1086. [百度学术]
LENZ R, ENDERS K, STEDMON C A, et al. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement [J]. Marine Pollution Bulletin, 2015, 100(1): 82-91. [百度学术]
COLLARD F, GILBERT B, EPPE G, et al. Detection of anthropogenic particles in fish stomachs: An isolation method adapted to identification by Raman spectroscopy [J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 331-339. [百度学术]