摘要
比较普通小球藻、蛋白核小球藻和斜生栅藻在不同氮水平下的生长状况和污水深度脱氮除磷效能,并从生物大分子累积角度解析氮源水平对微藻脱氮除磷的影响机制,为实现污水深度脱氮除磷同时收获微藻生产能源以缓解能源危机提供理论依据。结果表明:硝氮为唯一氮源时,微藻生长状况和脱氮除磷效能明显优于以氨氮为唯一氮源的试验组,叶绿素a含量也高于氨氮组;各试验组中硝氮浓度越高,藻细胞数量越多,且小球藻细胞增长量明显高于斜生栅藻;7天内硝氮浓度≤8 mg/L时氮的去除率均能达到98%以上,但氮浓度低的试验组中叶绿素a含量低,这是因为氮是叶绿素合成的重要元素。微藻通过调节细胞内大分子物质含量来适应不同的生存环境,在营养受限制的条件下会消耗自身物质以满足生命活动的需要,氮限制条件会引起细胞内脂质积累,证实了氮源水平控制微藻污水深度脱氮除磷耦合生物大分子累积的可行性。
污水处理厂二级处理出水中营养物质的含量(NH
微藻不仅是污水深度处理的一种有效措施,也可同步实现生物大分子物质累积,是生产生物能源的原
笔者以普通小球藻(Chlorella vulgaris)、蛋白核小球藻(Chlorella pyrenoidosa)和斜生栅藻(Scenedesmus obliquus)3种典型微藻为代表,研究不同氮源水平对微藻生长特性、脱氮除磷能力和生物大分子累积的影响,旨在为基于藻类的污水深度脱氮除磷耦合生物大分子生产技术提供理论支撑。
小球藻属中的普通小球藻(Chlorella vulgaris)和蛋白核小球藻(Chlorella pyrenoidosa)、栅藻属中的斜生栅藻(Scenedesmus obliquus)分别作为单细胞绿藻、群体绿藻代表,购自中国科学院水生生物所藻种库,能有效去除各种无机污染物并生产生物量和油脂。在无菌条件下,将藻种转接到装有600 mL BG-11培养基的1 000 mL锥形瓶中,封上封口
根据藻液吸光度与藻细胞密度—吸光度标线,取一定量处于对数生长期的藻液离心后弃去上清液,用超纯水清洗两次,然后悬浮至装有100 mL人工培养液的250 mL锥形瓶中,使得各藻种初始接种量为1.7×1
二沉池出水的无机营养元素含量通常相对较低(N:10~15 mg/L、P:0.5~1 mg/L
将一定浓度藻液稀释成一系列吸光度为0.05~1的梯度,采用血球计数板,在显微镜下数出细胞个数之后,用分光光度计测定藻液在680 nm处的吸光值(OD680)。获得蛋白核小球藻、普通小球藻和斜生栅藻的细胞密度与OD680之间的线性关系。
硝氮含量的测定采用紫外分光光度法(HJ/T 346—2007
Ei=(S0-Si)×S | (1) |
式中:Ei为去除效率,%;S0为氮磷的初始浓度,mg/L;Si为氮磷的剩余浓度,mg/L。
叶绿素含量测定采用热乙醇
叶绿素含量根据
Chla=27.9V1×[(E665-E750)-(A665-A750)]×V | (2) |
式中:Chla为叶绿素a浓度,mg/L;V1为萃取液定容的体积,mL;V样为过滤水样的体积,mL。
采用傅里叶红外光谱(FTIR)分析仪对藻细胞粉末中含有的官能团进行识别、分
按照Meng
不同初始氨氮浓度对微藻生长的影响如

(a) 普通小球藻

(b) 蛋白核小球藻

(c) 斜生栅藻
图1 3种微藻在不同氨氮浓度下的生长规律
Fig. 1 Growth law of three kinds of microalgae under different ammonia concentrations
不同初始硝氮浓度对微藻生长的影响如

(a) 普通小球藻

(b) 蛋白核小球藻

(c) 斜生栅藻
图2 3种微藻在不同硝氮浓度下的生长规律
Fig. 2 Growth law of three kinds of microalgae under different nitrate nitrogen concentrations
由

(a) 普通小球藻

(b) 蛋白核小球藻

(c) 斜生栅藻
图3 3种微藻在不同初始氮源比下的生长规律
Fig. 3 Growth law of three kinds of microalgae under different initial nitrogen source ratios
由

(a) 普通小球藻氨氮去除率的变化

(b) 蛋白核小球藻氨氮去除率的变化

(c) 斜生栅藻氨氮去除率的变化

(d) 普通小球藻TP去除率的变化

(e) 蛋白核小球藻TP去除率的变化

(f) 斜生栅藻TP去除率的变化
图4 3种微藻在不同氨氮浓度下对N、P的去除
Fig. 4 Removal of N and P by three kinds of microalgae at different concentrations of ammonia nitrogen
在不同初始氨氮浓度下,7 d内3种微藻对TP均有较高的去除率(≥80%)。3种微藻相比,对TP的去除率由高到低依次为斜生栅藻>蛋白核小球藻>普通小球藻。
由

(a) 普通小球藻硝氮去除率的变化

(b) 蛋白核小球藻硝氮去除率的变化

(c) 斜生栅藻硝氮去除率的变化

(d) 普通小球藻TP去除率的变化

(e) 蛋白核小球藻TP去除率的变化

(f) 斜生栅藻TP去除率的变化
图5 3种微藻在不同硝氮浓度下对N、P的去除
Fig. 5 Removal of N and P by three kinds of microalgae at different nitrate concentrations
由

(a) 普通小球藻N含量的变化

(b) 蛋白核小球藻N含量的变化

(c) 斜生栅藻N含量的变化

(d) 普通小球藻TP含量的变化

(e) 蛋白核小球藻TP含量的变化 (f ) 斜生栅藻TP含量的变化

图6 3种微藻在不同氮源比下对N、P的去除
Fig. 6 Removal of N and P by three kinds of microalgae at different nitrogen source ratios
综合考虑在不同氮源下3种藻细胞的生长情况及其脱氮除磷效能,后续选择蛋白核小球藻为研究对象,探究其污水深度脱氮除磷过程中生物大分子物质变化与累积机制。
不同氮源条件下蛋白核小球藻叶绿素a含量的变化如

(a) 氨氮

(b) 硝氮

(c) 不同比例的硝氮与氨氮
图7 蛋白核小球藻在不同氮源下的叶绿素a含量变化
Fig. 7 Chlorophyll-a content of Chlorella pyrenoidosaunder different nitrogen sources
蛋白核小球藻胞内大分子物质相对含量变化如

(a) 碳水化合物

(b) 蛋白质

(c) 脂质
图8 蛋白核小球藻在不同初始氮源浓度下的大分子物质含量相对变化
Fig. 8 Changes of macromolecule relative contents ofChlorella proteinosa under different initial nitrogen source concentrations

(a) 碳水化合物

(b) 蛋白质

(c) 脂质
图9 蛋白核小球藻在不同氮源比例下的大分子物质含量相对变化
Fig. 9 Changes of macromolecule relative contents in Chlorella proteinosa under different nitrogen source ratios

(a) 不同初始N浓度下的红外谱图

(b) 不同初始氮源比下的红外谱图
图10 蛋白核小球藻脱氮第4天和第7天红外光谱图
Fig. 10 Infrared spectrum of Chlorellapyrenoidosa on the fourth and seventh day ofnitrogen removal
模拟污水深度处理第4天时,低浓度硝氮组藻细胞内蛋白质含量较第1天减少,其余试验组较初始值均有所增加。Yao
以上结果表明,缺氮导致蛋白质合成受阻,使得光合作用中的固定碳更容易转向碳水化合物和脂质,这与Meng
在不同初始氮源水平下,蛋白核小球藻对模拟污水进行深度脱氮除磷第7天时的透射电镜图如

图11 蛋白核小球藻透射电镜图
Fig. 11 Transmission electron microscopy ofChlorella proteinosa
在脱氮除磷至第7天时,初始硝氮浓度为4 mg/L的试验组细胞中出现大脂体,淀粉颗粒大大减少,细胞壁增厚,但细胞结构完整(
在氮、磷含量充足的试验组(
以上结果表明,随着培养基中氮的消耗,蛋白核小球藻细胞内蛋白质和叶绿素含量会增加。而在氮消耗完之后,细胞会消耗内源氮源,同时储存能量以抵抗外界不利条件,从而维持自身生命活动。生物大分子水平呈现的结果就是蛋白质、叶绿素等含氮物质的减少和脂质、碳水化合物等储能物质的增加。
1)以硝氮为唯一氮源时,藻细胞增长量明显高于以氨氮为唯一氮源的情况,最终藻细胞浓度为前者浓度的2倍。在不同初始氮源比例下,随着硝氮所占比例增大,藻细胞生长速率增大。7 d内3种微藻对硝氮的去除更完全,只在低浓度氮源(≤8 mg/L)组对氮去除效果较好。故选用硝氮为唯一氮源,浓度选为8~16 mg/L,设定为12 mg/L。
2)不同藻种在不同氮源条件下生长规律有所不同,且小球藻细胞数量增长量高于斜生栅藻。不同初始硝氮浓度下,3种微藻对硝氮的去除速率为:斜生栅藻>蛋白核小球藻>普通小球藻,其中蛋白核小球藻对TP的去除最快、最完全。因此,蛋白核小球藻脱氮除磷性能最稳定。
3)与氨氮作为氮源相比,硝氮为唯一氮源时,7 d后各藻细胞叶绿素含量明显更高,为前者的2~4倍,低浓度氮源组叶绿素含量低。不同初始氮源比下,3种藻细胞叶绿素含量变化与其生长状况一致,硝氮所占比例越高,叶绿素含量增长越快。
4)傅里叶红外光谱和透射电镜分析表明,微藻通过调节细胞内大分子物质来适应不同的生存环境。氮源含量充足时,藻细胞内蛋白质和叶绿素含量增加,在营养受限制的条件下会消耗自身物质以满足生命活动的需要。氮限制条件会引起细胞内脂质积累。
参考文献
RUIZ-MARIN A, MENDOZA-ESPINOSA L G, STEPHENSON T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater [J]. Bioresource Technology, 2010, 101(1): 58-64. [百度学术]
李川, 薛建辉, 赵蓉, 等. 4种固定化藻类对污水中氮的净化能力研究[J]. 环境工程学报, 2009, 3(12): 2185-2188. [百度学术]
LI C, XUE J H, ZHAO R, et al. Nitrogen removal from wastewater by four species of immobilized algae [J]. Chinese Journal of Environmental Engineering, 2009, 3(12): 2185-2188. (in Chinese) [百度学术]
邓祥元, 丁婉婉, 樊玲波, 等. 2种微藻去除氮、磷能力的比较[J]. 吉林农业大学学报, 2013, 35(6): 694-698, 726. [百度学术]
DENG X Y, DING W W, FAN L B, et al. Comparative study on N and P removal ability of chlorella pyrenoidosa and scenedesmus obliquus [J]. Journal of Jilin Agricultural University, 2013, 35(6): 694-698, 726. (in Chinese) [百度学术]
LI X, HU H Y, GAN K, et al. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp [J]. Bioresource Technology, 2010, 101(14): 5494-5500. [百度学术]
RANI V, MARÓTI G. Assessment of nitrate removal capacity of two selected eukaryotic green microalgae [J]. Cells, 2021, 10(9): 2490. [百度学术]
HIGGINS B T, GENNITY I, FITZGERALD P S, et al. Algal-bacterial synergy in treatment of winery wastewater [J]. npj Clean Water, 2018, 1: 6. [百度学术]
CHANG H X, QUAN X J, ZHONG N B, et al. High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production [J]. Bioresource Technology, 2018, 266: 374-381. [百度学术]
GENG Y N, CUI D, YANG L M, et al. Resourceful treatment of harsh high-nitrogen rare earth element tailings (REEs) wastewater by carbonate activated Chlorococcum sp. microalgae [J]. Journal of Hazardous Materials, 2022, 423: 127000. [百度学术]
韩琳. 高产油脂微藻的筛选及其对生活污水脱氮除磷能力的研究[D]. 济南: 山东大学, 2015. [百度学术]
HAN L. Screeing of lipid-rich energy microalgae and study on its nitrogen and phosphorus removal properties in donestic sewage [D]. Jinan: Shandong University, 2015. (in Chinese) [百度学术]
DE JAEGER L, VERBEEK R E, DRAAISMA R B, et al. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization [J]. Biotechnology for Biofuels, 2014, 7: 69. [百度学术]
MARKOU G, DEPRAETERE O, MUYLAERT K. Effect of ammonia on the photosynthetic activity of Arthrospira and Chlorella: A study on chlorophyll fluorescence and electron transport [J]. Algal Research, 2016, 16: 449-457. [百度学术]
LI X T, LI W, ZHAI J, et al. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation [J]. Bioresource Technology, 2019, 273: 368-376. [百度学术]
SHARMA K K, SCHUHMANN H, SCHENK P M. High lipid induction in microalgae for biodiesel production [J]. Energies, 2012, 5(5): 1532-1553. [百度学术]
KHAN M I, SHIN J H, KIM J D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products [J]. Microbial Cell Factories, 2018, 17(1): 36. [百度学术]
KALRA R, GAUR S, GOEL M. Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production [J]. Journal of Water Process Engineering, 2021, 40: 101794. [百度学术]
JI X Y, JIANG M Q, ZHANG J B, et al. The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater [J]. Bioresource Technology, 2018, 247: 44-50. [百度学术]
KALLA N, KHAN S. Effect of nitrogen, phosphorus concentrations, pH and salinity ranges on growth, biomass and lipid accumulation of Chlorella vulgaris [J]. International Journal of Pharmaceutical Sciences and Research, 2016, 7: 397-405. [百度学术]
水质 硝酸盐氮的测定 紫外分光光度法:HJ/T 343—2007 [S]. 北京:中国环境科学出版社,2007. [百度学术]
Water quality-Determination of nitrate-nitrogen-Ultraviolet spectrophotometry: HJ/T 343—2007 [S]. Beijing: China Environmental Science Press, 2007. (in Chinese) [百度学术]
水质 氨氮的测定 纳氏试剂分光光度法:HJ 535—2009 [S]. 北京:中国环境科学出版社,2010. [百度学术]
Water quality-Determination of ammonia nitrogen-Nesslers reagent spectrophotometry: HJ 535—2009 [S]. Beijing: China Environmental Science Press, 2010. (in Chinese) [百度学术]
水质 总磷的测定 钼酸铵分光光度法:GB 11893—1989 [S]. 北京: 中国标准出版社,1989. [百度学术]
Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method: GB 11893—1989 [S]. Beijing: Standards Press of China, 1989. (in Chinese) [百度学术]
陈明华, 谢良国, 付志强, 等. 丙酮法和热乙醇法测定浮游植物叶绿素a的方法比对[J]. 环境监测管理与技术, 2016, 28(2): 46-48. [百度学术]
CHEN M H, XIE L G, FU Z Q, et al. Comparison of two methods for measurement of phytoplanktonic chlorophyll-a [J]. The Administration and Technique of Environmental Monitoring, 2016, 28(2): 46-48. (in Chinese) [百度学术]
陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J]. 湖泊科学, 2006, 18(5): 550-552. [百度学术]
CHEN Y W, CHEN K N, HU Y H. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method [J]. Journal of Lake Sciences, 2006, 18(5): 550-552. (in Chinese) [百度学术]
唐聪聪. 菌藻共生序批式泥膜系统脱氮除磷效能及作用机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [百度学术]
TANG C C. Performance and mechanism of algal-bacteial symbiosis system based on sequencing bactch biofilm-sludge reactor for nitrogen and phosphorus removal [D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese) [百度学术]
PISTORIUS A M A, DEGRIP W J, EGOROVA-ZACHERNYUK T A. Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy [J]. Biotechnology and Bioengineering, 2009, 103(1): 123-129. [百度学术]
MENG Y Y, YAO C H, XUE S, et al. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions [J]. Bioresource Technology, 2014, 151: 347-354. [百度学术]
LIANG Z J, LIU Y, GE F, et al. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis [J]. Chemosphere, 2013, 92(10): 1383-1389. [百度学术]
刘燕. 小球藻与地衣芽孢杆菌联合体系脱氮除磷效果的研究[D]. 湖南 湘潭: 湘潭大学, 2012. [百度学术]
LIU Y. The study on the removal of nitrogen and phosphorus by combined system of Chlorella vulgari and Bacillus licheniformis [D]. Xiangtan, Hunan: Xiangtan University, 2012. (in Chinese) [百度学术]
SADIQ I M, DALAI S, CHANDRASEKARAN N, et al. Ecotoxicity study of titania (TiO₂) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. [J]. Ecotoxicology and Environmental Safety, 2011, 74(5): 1180-1187. [百度学术]
章斐, 陈秀荣, 江子建, 等. 不同氮磷浓度下2种无毒微藻的生长特性和脱氮除磷效能[J]. 环境工程学报, 2015, 9(2): 559-566. [百度学术]
ZHANG F, CHEN X R, JIANG Z J, et al. Growth characteristics and removal efficiency of nitrogen and phosphorus of two kinds of non-toxic microalgae under different nitrogen and phosphorus concentrations [J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 559-566. (in Chinese) [百度学术]
METSOVITI M N, KATSOULAS N, KARAPANAGIOTIDIS I T, et al. Effect of nitrogen concentration, two-stage and prolonged cultivation on growth rate, lipid and protein content of Chlorella vulgaris [J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5): 1466-1473. [百度学术]
ZHU L D, LI S X, HU T Y, et al. Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono- and mix-cultured microalgae [J]. Energy Conversion and Management, 2019, 201: 112144. [百度学术]
WANG B, LAN C Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent [J]. Bioresource Technology, 2011, 102(10): 5639-5644. [百度学术]
LI Y Q, HORSMAN M, WANG B, et al. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans [J]. Applied Microbiology and Biotechnology, 2008, 81(4): 629-636. [百度学术]
LALIBERTÉ G, LESSARD P, NOÜE J D L, et al. Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium phormidium bohneri [J]. Bioresource Technology, 1997, 59(2/3): 227-233. [百度学术]
PODEVIN M, DE FRANCISCI D, HOLDT S L, et al. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method [J]. Journal of Applied Phycology, 2015, 27(4): 1415-1423. [百度学术]
孙凯峰, 肖爱风, 刘伟杰, 等. 氮磷浓度对惠氏微囊藻和斜生栅藻生长的影响[J]. 南方水产科学, 2017, 13(2): 69-76. [百度学术]
SUN K F, XIAO A F, LIU W J, et al. Effect of nitrate and phosphate concentration on growth of Microcystis wesenbergii and Scenedesmus obliquus [J]. South China Fisheries Science, 2017, 13(2): 69-76. (in Chinese) [百度学术]
LOURENÇO S O, BARBARINO E, MARQUEZ U M L, et al. Distribution of intracellular nitrogen in marine microalgae: Basis for the calculation of specific nitrogen-to-protein conversion factors [J]. Journal of Phycology, 1998, 34(5): 798-811. [百度学术]
FERREIRA V S, PINTO R F, SANT'ANNA C. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus [J]. Journal of Applied Microbiology, 2016, 120(3): 661-670. [百度学术]
YAO C H, AI J N, CAO X P, et al. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation [J]. Bioresource Technology, 2012, 118: 438-444. [百度学术]
WIDJAJA A, CHIEN C C, JU Y H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris [J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1): 13-20. [百度学术]
GRAVES M V, BURBANK D E, ROTH R, et al. Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae [J]. Virology, 1999, 257(1): 15-23. [百度学术]
LI Y T, HAN D X, SOMMERFELD M, et al. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions [J]. Bioresource Technology, 2011, 102(1): 123-129. [百度学术]
WANG Z T, ULLRICH N, JOO S, et al. Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii [J]. Eukaryotic Cell, 2009, 8(12): 1856-1868. [百度学术]
PŘIBYL P, CEPÁK V, ZACHLEDER V. Production of lipids and formation and mobilization of lipid bodies in Chlorella vulgaris [J]. Journal of Applied Phycology, 2013, 25(2): 545-553. [百度学术]
RATOMSKI P, HAWROT-PAW M. Influence of nutrient-stress conditions on Chlorella vulgaris biomass production and lipid content [J]. Catalysts, 2021, 11(5): 573. [百度学术]
ZHU S N, FENG P Z, FENG J, et al. The roles of starch and lipid in Chlorella sp. during cell recovery from nitrogen starvation [J]. Bioresource Technology, 2018, 247: 58-65. [百度学术]
GUARNIERI M T, NAG A, SMOLINSKI S L, et al. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga [J]. PLoS One, 2011, 6(10): e25851. [百度学术]