摘要
实现磷资源的高效回收和农业废弃物的资源化利用具有重要意义。采用氯化铁、硫酸铁、氯化钙对水稻秸秆生物炭(RSB)进行改性,得到3种改性稻秆生物炭(PRSB-Fe、PRSB-FS和PRSB-Ca),采用SEM、XPS、FTIR和BET对其进行表征,并通过批量实验探究其对模拟废水和化粪池粪污分离液中磷酸盐的吸附特性。模拟废水实验结果表明:伪二级动力学方程能更好地描述改性生物炭对磷的吸附过程(
磷资源短缺正在成为21世纪面临的主要挑战之一,但同时,作为一种环境污染物,磷的过量排放会引起水体富营养化等严重的环境问
吸附法是去除水中污染物最有效的技术之一,具有成本低、效率高、操作简便等优
水稻是中国的三大粮食作物之一,每年产量高达2亿
笔者将水稻秸秆生物炭作为原始材料,首先进行酸洗预处理,然后分别采用氯化铁、硫酸铁、氯化钙进行金属负载,从而得到3种改性生物炭磷吸附剂,在模拟废水中通过批量实验探究其吸附性能,并最终实现对实际化粪池粪污分离液中磷的吸附与回收。
主要仪器:THZ-82型恒温振荡器、KMS-501型多联磁力搅拌器、PB0型pH计、FA224型电子天平、XMTA-5000型恒温干燥箱、GM-0.33A型隔膜真空泵、紫外可见分光光度计(DR5000,美国哈希公司)等。
主要试剂:磷酸二氢钾、钼酸铵、酒石酸锑钾、抗坏血酸、HCl、H2SO4、NaOH、FeCl3、Fe2(SO4)3、CaCl2、Na2CO3、Na2SO4、NaCl等;所有实验试剂均为分析纯(AR),实验中所有用水均为超纯水。
水稻秸秆生物炭(RSB)的制备温度为500 ℃,粒径为20目(购自南京智融联科技有限公司)。取100 g的RSB置于1 000 mL 1 mol/L的HCl溶液中浸泡1 h,抽滤后用超纯水反复洗涤数遍,放入90 ℃烘箱中烘干至恒重,得到酸洗生物炭(PRSB)。
分别取PRSB各10 g置于100 mL 0.5 mol/L(以金属离子浓度计)的FeCl3、Fe2(SO4)3、CaCl2溶液中,室温下磁力搅拌1 h后静置24 h,放入90 ℃烘箱中烘干至恒重,分别得到3种改性生物炭PRSB-Fe-5、PRSB-FS-5、PRSB-Ca-5(数字表示设计的金属负载量,mmol/g)。同理,制备得到PRSB-Fe-2.5、PRSB-FS-2.5、PRSB-Ca-2.5、PRSB-Fe-7.5、PRSB-FS-7.5和PRSB-Ca-7.5。
采用扫描电子显微镜(SEM,Thermo Apreo S HiVac FEI,美国)观察生物炭改性前后、吸附磷前后的微观形貌;通过X射线光电子谱仪(XPS,Thermo Kalpha,美国)对生物炭含有的元素进行表征;通过傅立叶变换红外光谱(FTIR,Nicolet 670,美国),在400~4 000 c
在达到指定时间后,统一采用针筒吸取上清液,经0.45 μm孔径的滤膜过滤后,根据GB 11893—1989中钼酸铵分光光度
qt=(C0-Ct)V/m0 | (1) |
qe=(C0-Ce)V/m0 | (2) |
η=(C0-Ce)/C0×100% | (3) |
式中:qt和qe分别为在反应进行t时刻和吸附平衡时生物炭对磷的吸附量,mg/g;η为生物炭对磷的去除率,%;Ct和Ce分别为t时刻和平衡时溶液中的磷浓度,mg/L;C0为初始溶液的磷浓度,mg/L;V为溶液的体积,L;m0为生物炭的质量,g。
吸附动力学实验。分别取0.10 g改性生物炭(PRSB-Fe-2.5、PRSB-Fe-5、PRSB-Fe-7.5、PRSB-FS-2.5、PRSB-FS-5、PRSB-FS-7.5、PRSB-Ca-2.5、PRSB-Ca-5和PRSB-Ca-7.5)于100 mL 30 mg/L的磷溶液中,在400 r/min的条件下进行磁力搅拌,分别于0、0.5、1、3、5、10、15、25、35、45 min取样。
等温吸附实验。分别取0.05 g PRSB-Fe-5、PRSB-FS-5和PRSB-Ca-5于25 mL磷溶液中(2、6、10、20、60、100、120、200 mg/L),在20 ℃、150 r/min的条件下恒温振荡反应2 h。
生物炭投加量的影响。分别取0.05、0.10、0.20 g PRSB-FS-5于100 mL 30 mg/L的磷溶液中,在400 r/min的条件下磁力搅拌反应45 min。
初始pH值的影响。采用1 mol/L HCl溶液或1 mol/L NaOH溶液将反应体系的初始pH值调节为4~12,然后分别加入0.05 g PRSB-Fe-5、PRSB-FS-5和PRSB-Ca-5于25 mL 20 mg/L的磷溶液中,在20 ℃、150 r/min的条件下恒温振荡反应2 h。
共存离子的影响。向25 mL 60 mg/L 磷溶液中分别加入Na2SO4、Na2CO3和NaCl(阴离子浓度均为3个梯度:50、200、500 mg/L),然后加入0.05 g PRSB-Fe-5,在20 ℃、150 r/min的条件下恒温振荡反应2 h。同理,采用PRSB-FS-5和PRSB-Ca-5进行相应的实验。

图1 生物炭改性前后、吸附磷前后的SEM图
Fig. 1 The SEM images of biochar before and after modification and phosphorus adsorption

图2 X射线光电子能谱图
Fig. 2 X-ray photoelectron spectra

图3 FTIR光谱图
Fig. 3 FTIR spectra
材料 | 比表面积/( | 平均孔径/nm | 孔容/(c |
---|---|---|---|
RSB | 4.95 | 5.01 | 0.006 2 |
PRSB | 34.57 | 3.16 | 0.027 2 |
PRSB-Fe-5 | 11.73 | 12.03 | 0.035 3 |
PRSB-FS-5 | 8.92 | 9.06 | 0.020 2 |
PRSB-Ca-5 | 5.47 | 15.53 | 0.021 2 |

图4 吸附动力学研究
Fig. 4 Study of adsorption kinetics
为了更好地研究改性生物炭对磷的吸附行为,采用Langergren伪一级和伪二级反应方程对模拟废水中发生的吸附过程进行拟合,如
ln (qe-qt) = ln qe-k1t | (4) |
t/qt = 1/(k2q | (5) |
式中:qt为t时刻生物炭对磷的吸附量,mg/g; qe 为吸附平衡时生物炭对磷的吸附量,mg/g;t为吸附反应进行的时间,min;k1为伪一级动力学的速率常数,mi
由
改性生物炭 | qe(exp)/(mg· | 伪一级动力学模型 | 伪二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
qe1/(mg· | k1/mi | qe2/(mg· | k2/(g·m | ||||
PRSB-Fe-5 | 24.85 | 23.67 | 2.768 1 | 0.985 8 | 24.24 | 0.250 2 | 0.997 3 |
PRSB-FS-5 | 27.13 | 26.18 | 2.955 9 | 0.991 9 | 26.73 | 0.262 3 | 0.998 8 |
PRSB-Ca-5 | 18.04 | 18.29 | 6.206 6 | 0.997 0 | 18.39 | 2.057 6 | 0.997 7 |
为了更好地探究改性生物炭对磷的吸附机理,用Langmuir方程和Freundlich方程对实验数据进行拟合,如
Ce/qe = Ce/Qm+1/(QmKL) | (6) |
ln qe = ln KF + (1/n) × ln Ce | (7) |
式中:Ce为到达吸附平衡时溶液中的磷浓度,mg/L;qe 为到达吸附平衡时生物炭对磷的吸附量,mg/g;Qm为生物炭的理论最大吸附量,mg/g;KL和KF分别为Langmuir方程和Freundlich方程中吸附能力相关参数,L/mg;n为吸附相关的系数。
由
改性生物炭 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|
Qm/(mg· | KL/(L·m | n | KF/(L·m | |||
PRSB-Fe-5 | 4.814 6 | 0.039 8 | 0.912 6 | 0.061 6 | 0.505 2 | 0.925 5 |
PRSB-FS-5 | 8.591 1 | 0.033 7 | 0.844 0 | 0.301 4 | 0.724 3 | 0.907 1 |
PRSB-Ca-5 | 18.863 4 | 0.161 9 | 0.826 2 | 3.688 9 | 1.319 8 | 0.939 0 |
不同生物炭对磷的吸附量随pH值的变化如

图5 pH值对生物炭吸附磷的影响
Fig. 5 Effect of pH value on phosphorus adsorptionby biochar
从
3H2PO | (8) |
3HPO | (9) |

图6 磷酸根的分布曲线图
Fig. 6 The distribution curves of phosphate groups
3PO
(10)

图7 生物炭投加量对吸附量和去除率的影响
Fig. 7 Effect of biocar dosage on adsorption capacity and removal rate
实际水体中存在的阴离子可能会干扰改性生物炭对磷的吸附效果,因此,有必要对潜在的竞争离子进行研究,

(a) 硫酸根离子

(b) 碳酸根离子

(c) 氯离子
图8 共存离子对改性生物炭磷吸附量的影响
Fig. 8 Effect of coexisting ions on phosphorusadsorption capacity of modified biochar
CO
对于取自重庆市某化粪池的粪污分离液(初始磷浓度为(12.94±1.51) mg/g,pH值为7.4±0.2),由
为了方便与其他已报道的磷吸附剂进行对比,
原始材料 | 改性剂 | 最大吸附量/(mg· | 参考文献 |
---|---|---|---|
芦苇 | 氯化镁 | 8.52 |
[ |
香蒲 | 氯化镧 | 36.01 |
[ |
污泥 | 氢氧化钾 | 14.20 |
[ |
松木 | 氯化铁 | 3.20 |
[ |
花生壳 | 氯化镁 | 18.96 |
[ |
玉米秸秆 | 氯化铈 | 77.52 |
[ |
小麦秸秆 | 氯化铁 | 10.10 |
[ |
水稻秸秆 | 氯化铁 | 24.85 | 本研究 |
水稻秸秆 | 硫酸铁 | 27.13 | 本研究 |
水稻秸秆 | 氯化钙 | 18.04 | 本研究 |
1)采用氯化铁、硫酸铁、氯化钙对水稻秸秆生物炭进行改性,制备了3种高效环保的磷吸附剂,并实现了对化粪池粪污分离液中磷的吸附和回收(初始磷浓度为(12.94±1.51) mg/L,pH值为7.4±0.2)。实验结果表明,硫酸铁改性得到的PRSB-FS-5效果最好,最大磷吸附量可以达到23.35 g/mg,处理后的溶液中剩余磷浓度仅有0.37 mg/L,达到《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准的要求(0.5 mg/L)。
2)动力学实验结果表明,磷酸盐在PRSB-Fe-5、PRSB-FS-5和PRSB-Ca-5上的吸附过程都更加符合Langergren伪二级动力学方程,表明其反应过程以化学吸附为主。吸附等温线的拟合结果表明,3种改性生物炭在模拟废水中对磷的吸附都更符合Freundlich方程,说明在这个过程中可能是多层吸附起主导作用。
3)采用PRSB-Fe-5和PRSB-FS-5处理模拟废水时,吸附剂对磷的吸附量随pH值的升高而减小;而PRSB-Ca-5对磷的吸附量随pH值的上升而增大。此外,共存离子影响实验结果表明,外加氯离子基本不会影响3种改性生物炭的吸附效果;而硫酸根离子能显著提升PRSB-Fe-5对磷的吸附效果;碳酸根离子可以引发溶液pH值发生变化,从而在不同程度上影响改性生物炭对磷的吸附效果。
参考文献
CORDELL D, NESET T S S. Phosphorus vulnerability: A qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity [J]. Global Environmental Change, 2014, 24: 108-122. [百度学术]
NAKARMI A, BOURDO S E, RUHL L, et al. Benign zinc oxide betaine-modified biochar nanocomposites for phosphate removal from aqueous solutions [J]. Journal of Environmental Management, 2020, 272: 111048. [百度学术]
何强, 何璇, 洪毅怡晖, 等. 铁盐辅助生物除磷工艺研究进展[J]. 土木与环境工程学报(中英文), 2022, 44(1): 160-167. [百度学术]
HE Q, HE X, HONG Y Y H, et al. A review of ferric salt dependent phosphorus removal in wastewater [J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 160-167. (in Chinese) [百度学术]
王晓. 我国农村厕所革命研究文献综述[J]. 农业与技术, 2021, 41(15): 174-177. [百度学术]
WANG X. Literature review on the study of toilet revolution in China rural areas [J]. Agriculture and Technology, 2021, 41(15): 174-177. (in Chinese) [百度学术]
汪浩, 王俊能, 陈尧, 等. 我国农村化粪池污染物去除效果及影响因素分析[J]. 环境工程学报, 2021, 15(2): 727-736. [百度学术]
WANG H, WANG J N, CHEN Y, et al. Pollutant-removal performance of rural septic tank and its influencing factors [J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 727-736. (in Chinese) [百度学术]
赖竹林, 于振江, 周雪飞, 等. 我国农村化粪池技术发展现状及趋势[J]. 安徽农业科学, 2020, 48(19): 69-72. [百度学术]
LAI Z L, YU Z J, ZHOU X F, et al. The development status and trend of septic tank technology in Chinese rural areas [J]. Journal of Anhui Agricultural Sciences, 2020, 48(19): 69-72. (in Chinese) [百度学术]
ROSALES E, MEIJIDE J, PAZOS M, et al. Challenges and recent advances in biochar as low-cost biosorbent: From batch assays to continuous-flow systems [J]. Bioresource Technology, 2017, 246: 176-192. [百度学术]
CHENG N, WANG B, WU P, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review [J]. Environmental Pollution, 2021, 273: 116448. [百度学术]
WANG R Z, LI H J, GE G X, et al. Montmorillonite-based two-dimensional nanocomposites: Preparation and applications [J]. Molecules, 2021, 26(9): 2521. [百度学术]
AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review [J]. Chemosphere, 2014, 99: 19-33. [百度学术]
OGINNI O, YAKABOYLU G A, SINGH K, et al. Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources [J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103723. [百度学术]
DENG Y, LI M, ZHANG Z, et al. Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar [J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105079. [百度学术]
ALMANASSRA I W, MCKAY G, KOCHKODAN V, et al. A state of the art review on phosphate removal from water by biochars [J]. Chemical Engineering Journal, 2021, 409: 128211. [百度学术]
LEHMANN J. A handful of carbon [J]. Nature, 2007, 447(7141): 143-144. [百度学术]
WOOLF D, AMONETTE J E, STREET PERROTT F A, et al. Sustainable biochar to mitigate global climate change [J]. Nature Communications, 2010, 1: 56. [百度学术]
SOHI S P. Agriculture. Carbon storage with benefits [J]. Science, 2012, 338(6110): 1034-1035. [百度学术]
王琳. 农田土壤—生物炭固碳减排的影响因素及潜力估算[D]. 杭州: 浙江大学, 2021. [百度学术]
WANG L. Influencing factors and potential estimation of the carbon sequestration and emission reduction from farmland soil with biochar amendment [D]. Hangzhou: Zhejiang University, 2021. (in Chinese) [百度学术]
LIU N, CHARRUA A B, WENG C H, et al. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study [J]. Bioresource Technology, 2015, 198: 55-62. [百度学术]
柴如山, 黄晶, 罗来超, 等. 我国水稻秸秆磷分布及其还田对土壤磷输入的贡献[J]. 中国生态农业学报(中英文), 2021, 29(6): 1095-1104. [百度学术]
CHAI R S, HUANG J, LUO L C, et al. Distribution of rice straw phosphorus resources in China and its utilization potential under straw return [J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1095-1104. (in Chinese) [百度学术]
蒋旭涛, 迟杰. 铁改性生物炭对磷的吸附及磷形态的变化特征[J]. 农业环境科学学报, 2014, 33(9): 1817-1822. [百度学术]
JIANG X T, CHI J. Phosphorus adsorption by and forms in Fe-modified biochar [J]. Journal of Agro-Environment Science, 2014, 33(9): 1817-1822. (in Chinese) [百度学术]
FENG Y F, LU H Y, LIU Y, et al. Nano-cerium oxide functionalized biochar for phosphate retention: Preparation, optimization and rice paddy application [J]. Chemosphere, 2017, 185: 816-825. [百度学术]
YANG Q, WANG X L, LUO W, et al. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge [J]. Bioresource Technology, 2018, 247: 537-544. [百度学术]
水质 总磷的测定 钼酸铵分光光度法:GB 11893—1989 [S].北京:中国标准出版社,1989. [百度学术]
Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method: GB 11893—1989 [S]. Beijing: Stardards Press of China, 1989. (in Chinese) [百度学术]
曲今垚, 林艳, 孙强, 等. 壳聚糖聚多巴胺改性水凝胶对双氯芬酸钠的吸附实验研究[J]. 土木与环境工程学报(中英文), 2022, 44(1): 177-187. [百度学术]
QU J Y, LIN Y, SUN Q, et al. Experimental study on adsorption of diclofenac sodium by polydopamine modified chitosan hydrogel [J]. Journal of Civil and Environmental Engineering, 2022, 44(1): 177-187. (in Chinese) [百度学术]
TAN G C, SUN W L, XU Y R, et al. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution [J]. Bioresource Technology, 2016, 211: 727-735. [百度学术]
BORUAH P K, DARABDHARA G, DAS M R. Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides [J]. Chemosphere, 2021, 268: 129328. [百度学术]
ZHAO R, WANG Y X, AN Y Y, et al. Chitin-biocalcium as a novel superior composite for ciprofloxacin removal: Synergism of adsorption and flocculation [J]. Journal of Hazardous Materials, 2022, 423: 126917. [百度学术]
HUANG Y Y, HU C, AN Y Y, et al. Magnetic phosphorylated chitosan composite as a novel adsorbent for highly effective and selective capture of lead from aqueous solution [J]. Journal of Hazardous Materials, 2021, 405: 124195. [百度学术]
WANG X D, LIU H Y, CHEN D, et al. Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy [J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4966-4971. [百度学术]
LI R H, WANG J J, ZHOU B Y, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment [J]. Journal of Cleaner Production, 2017, 147: 96-107. [百度学术]
NOVAIS S V, ZENERO M D O, BARRETO M S C, et al. Phosphorus removal from eutrophic water using modified biochar [J]. Science of the Total Environment, 2018, 633: 825-835. [百度学术]
XUE J B, WANG H X, LI P, et al. Efficient reclaiming phosphate from aqueous solution using waste limestone modified sludge biochar: Mechanism and application as soil amendments [J]. Science of the Total Environment, 2021, 799: 149454. [百度学术]
XIAO J, HU R, CHEN G C, et al. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism [J]. Journal of Hazardous Materials, 2020, 399: 123067. [百度学术]
WANG H B, LIU Y, IFTHIKAR J, et al. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment [J]. Bioresource Technology, 2018, 256: 269-276. [百度学术]
马烁, 熊双莲, 熊力, 等. 铁改性海泡石吸附镉和砷效果及其影响因素[J]. 水处理技术, 2019, 45(10): 73-77. [百度学术]
MA S, XIONG S L, XIONG L, et al. Adsorption efficiency of cadmium and arsenic by iron-modified sepiolite and its influencing factors [J]. Technology of Water Treatment, 2019, 45(10): 73-77. (in Chinese) [百度学术]
ELZINGA E J, SPARKS D L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation [J]. Journal of Colloid and Interface Science, 2007, 308(1): 53-70. [百度学术]
AJMAL Z, MUHMOOD A, USMAN M, et al. Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics [J]. Journal of Colloid and Interface Science, 2018, 528: 145-155. [百度学术]
WANG S D, KONG L J, LONG J Y, et al. Adsorption of phosphorus by calcium-flour biochar: Isotherm, kinetic and transformation studies [J]. Chemosphere, 2018, 195: 666-672. [百度学术]
孟庆瑞, 崔心红, 朱义, 等. 载氧化镁水生植物生物炭的特性表征及对水中磷的吸附[J]. 环境科学学报, 2017, 37(8): 2960-2967. [百度学术]
MENG Q R, CUI X H, ZHU Y, et al. Characterization of MgO-loaded aquatic plants biochar and its adsorption capacity of phosphorus in aqueous solution [J]. Acta Scientiae Circumstantiae, 2017, 37(8): 2960-2967. (in Chinese) [百度学术]
XU Q Y, CHEN Z B, WU Z S, et al. Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration [J]. Bioresource Technology, 2019, 289: 121600. [百度学术]
SPATARU A, JAIN R, CHUNG J W, et al. Enhanced adsorption of orthophosphate and copper onto hydrochar derived from sewage sludge by KOH activation [J]. RSC Advances, 2016, 6(104): 101827-101834. [百度学术]
QIU B B, DUAN F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 571: 86-93. [百度学术]
WU L P, WEI C B, ZHANG S R, et al. MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil [J]. Journal of Cleaner Production, 2019, 235: 901-909. [百度学术]