网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

考虑分区各向异性和渗流作用的边坡稳定性研究  PDF

  • 张帮鑫 1
  • 贾剑青 1
  • 赖远明 2
  • 王宏图 3
  • 辛成平 1
1. 兰州交通大学 交通运输学院,兰州 730070; 2. 中国科学院 西北生态环境资源研究院,兰州 730000; 3. 重庆大学 资源与安全学院,重庆 400044

中图分类号: TU413.62

最近更新:2023-07-09

DOI:10.11835/j.issn.2096-6717.2021.192

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

土体强度各向异性和渗流作用是影响边坡稳定性的重要因素。为使稳定性计算时边坡土体强度的各向异性更切合实际,提出对成层边坡土体进行分级加载和分区考虑强度各向异性的方法:将边坡土体最大主应力方向角与成层土相交区域设置为初始分区,然后结合有限元计算结果,推导各成层土各向异性强度参数计算公式,并即时计算各分区内土体强度参数;在逐级施加荷载过程中,根据计算所得土体强度参数,进一步调整初始分区,通过初分、细分和精分3级控制,确定耦合计算分区和各分区土体强度参数。在此基础上,建立考虑土体分区各向异性、未分区各向异性和未分区各向同性3种工况的流固耦合模型,分析边坡体应力场、位移场和渗流场的变化规律和特点,并采用强度折减法计算边坡稳定性。结果表明:考虑土体分区各向异性时,坡体平均应力最大值较未分区各向异性时有所减小,但较未分区各向同性时有所增大,其渗流域和流速较其他两种工况均有所减小;考虑土体分区各向异性时,计算所得边坡稳定性系数为1.109,较其他两种工况分别下降了2.8%和21.3%。

土体强度的各向异性和渗流作用是影响边坡稳定性的重要因[

1-2];强度折减法是边坡稳定性分析的重要方法之[3],近年来,学者们对此开展了一系列研究。苏永华[1]建立了考虑土体含水率分布与坡面渗流作用的降雨入渗分析模型,并确定了边坡稳定性系数计算公式;Sun[3]提出了一种基于特征点位移突变的残差位移增量准则,将最大平均残余位移增量对应的强度折减系数作为边坡的安全系数;Rao[4]研究了非均质和各向异性黏性土边坡的抗滑桩加固技术和稳定性;Xu[5]探讨了非均质系数和各向异性系数与边坡体加固效果的关系;罗凌晖[6]研究了土体强度各向异性对成层土边坡稳定性的影响,并结合强度折减法分析了其稳定性;曾铃[7]试验研究了不同降雨条件下砂土和粉质黏土体积含水率与基质吸力的变化规律;Zeng[8]研究了降雨入渗条件下,边坡体内瞬态饱和区的形成、发展和消散过程;何晓[9]考虑渗流正交异性的耦合作用,研究了胶凝砂砾石坝的渗流及应力变化特性;王正成[10]考虑弹性模量、泊松比等参数的变化,建立了流固耦合模型,分析了某坝基渗流场与应力场特征;史卜涛[11]提出了物质点强度折减法,并分析了某边坡稳定性;Nie[12]研究了强度折减法的破坏准则,并与极限平衡法进行了比较;刘亚[13]分区考虑土体强度各向异性,计算分析了边坡稳定性,但该分区方法仅视觉性地将应力偏转方向大体一致的区域进行集中分区。目前,鲜有文献考虑土体分区各向异性和渗流作用对边坡稳定性的影响。笔者以某边坡工程为例,考虑土体分区各向异性和雨水的入渗作用,建立流固耦合模型,并采用强度折减法计算分析边坡稳定性。

1 流固耦合理论与强度折减法

1.1 流固耦合理论

流固耦合的基本思想是采用有限元方法将边坡体离散为有限个土体单元,并通过求解由达西理论和有限元理论所建立的有限元方程,即可得到单元体的节点位移和孔隙水压力,然后结合渗流场和应力场相互作用机理,推出两场耦合的有限元模[

14-15]。流固耦合中,渗流场影响应力场模型可表达[14-15]

xk(σ,p)Hx+yk(σ,p)Hy=0, x,yΩHx,y=H1x,y, x,yΓ1kσ,pHn2=qx,y, x,yΓ2Hx,y=y,kσ,pHn3=0, x,yΓ3 (1)

式中:k为渗透系数;σpk的影响参数;H为形函数;q为流量;n2为边界Γ2的法线方向;n3为边界Γ3的法线方向。

应力场影响渗流场模型[

14-15]

Lσ+f+X=0, x,yΩε=Bδ, x,yΩσ=Dε=DBδ, x,yΩnσ=t¯, x,ySσu={u¯}, x,ySM (2)

式中:L为微分算子矩阵;n为面力边界Sσ法线方向的方向余弦矩阵,即n=nx0ny0nxnyf为渗流场的水头分布函数;X为节点外荷载矩阵;{u}为位移场;B为应力插值矩阵;D为弹性矩阵;Sσ为已知面力边界;t¯为已知面力边界Sσ上的面力分布,也为水头分布Hx,y)的函数;SM为位移边界;{u¯}为位移边界SM上的位移矢量。

则流固耦合有限元模型[

14-16]

K+H+f=0σ=Dε=DBδMδ=X+F (3)

式中:K为渗透系数相关矩阵;f为渗流场水头分布函数;H为形函数;M为整体刚度矩阵;X为节点外荷载矩阵;F为渗透力矩阵。

1.2 强度折减法

强度折减法是在外荷载不变的情况下,将土体抗剪强度参数的黏聚力和内摩擦角进行折减,得到新的土体强度参数,并通过不断增大折减系数Fr直至边坡达到极限平衡状态,此时折减系数即为边坡体的安全系数,可表示[

15,17]

c'=c/Frφ'=arctan(tan φ/Fr) (4)

2 工程背景

研究的边坡位于陕西省咸阳市旬邑县境内,为中国国家高速公路菏泽至宝鸡联络线某合同段项目;边坡体地质构造为发育中、新生代陆相地层,地下水主要由降雨及周边河谷暗流组成;项目区地处内陆,年平均降雨量为589.4 mm。边坡横断面如图1所示(为便于分析,下文图表中①为水泥土;②为素土;③为浅黄色粉土;④为黄褐色粉质黏土)。各土层物理力学参数如表1所示。

图1  边坡横断面图(单位:m)

Fig. 1  Cross-sectional view of the slope (Unit: m)

表1  物理力学参数
Table 1  The physical and mechanical parameters
类别天然重度/(kN·m-3)黏聚力/kPa摩擦角/(°)弹性模量/MPa泊松比渗透系数/(m·h-1)干密度/(g·cm-3)
24.0 100.0 22.5 360.0 0.15 3.6×10-6 1.70
19.0 21.0 31.0 15.0 0.15 2.9×10-2 1.78
18.0 10.1 25.3 30.0 0.25 1.7×10-2 1.50
19.9 23.8 23.2 27.8 0.30 1.8×10-3 1.57

3 边坡稳定性分析

3.1 模型建立和参数确定

3.1.1 模型建立

建立的边坡有限元模型如图2所示。根据边坡成层土体地质分布特征并结合其几何形状,将边坡体划分为I区、Ⅱ区、Ⅲ区和Ⅳ区4个区域。

图2  有限元模型

Fig. 2  Finite element model

流固耦合分析中,在模型gh边施加水平和垂直位移约束,fgah边施加水平位移约束,其他边均为自由边界;考虑降雨入渗的影响,在abcdef边施加降雨荷载,根据该地区年平均降雨量的统计结果,取雨水入渗强度为6.365×10-5 m/h;在fghi区域内考虑孔隙水压力变化;模型网格单元类型选用孔隙流体单元(CPE4P)。

3.1.2 参数确定

土层抗剪强度参数会随土体最大主应力方向角α的变化而变[

14,18-19]。当角α分别为0°、30°、60°和90°时,取土体各向异性系数K=0.7,采用Casagrande[13]计算所得各土层的强度参数,如表2所示。利用最小二乘法并结合表2,推导土体①、②、③、④各向异性强度参数方程,分别为式(5)式(6)式(7)式(8)

表2  抗剪强度参数变化
Table 2  Variation of shear strength parameters
α/(°)①水泥土②素土③浅黄色粉土④黄褐色粉质黏土
c/kPaφ/(°)c/kPaφ/(°)c/kPaφ/(°)c/kPaφ/(°)
0 100.0 22.5 21.0 31.0 10.1 25.3 23.8 23.2
30 92.5 20.8 19.4 28.7 9.3 23.4 22.0 21.5
60 77.5 17.4 16.3 24.0 7.8 19.6 18.4 18.0
90 70.0 15.8 14.7 21.7 7.1 17.7 16.7 16.2
ci=84.481+Ac+0.004 8Ac2-0.237Ac3φi=arctan0.351+Aφ-2.286Aφ2+5.714Aφ3 (5)

式中:Ac=-0.105×1+b-3cos2αb2-b+11/2

Aφ=-0.1×1+b-3cos2αb2-b+11/2

ci=17.51+Ac+0.017Ac2+0.343Ac3φi=arctan0.51+Aφ-2Aφ2+12Aφ3 (6)

式中:Ac=-0.11×1+b-3cos2αb2-b+11/2

Aφ=-0.09×1+b-3cos2αb2-b+11/2
ci=16.521+Ac+5.012Ac2-11.865Ac3φi=arctan0.3231+Aφ+62.805Aφ2-181.126Aφ3 (7)

式中:Ac=-0.155 6×1+b-3cos2αb2-b+11/2Aφ=-0.037 2×1+b-3cos2αb2-b+11/2

ci=6.2451+Ac+81.941Ac2-411.005Ac3φi=arctan0.4241+Aφ+31.361Aφ2+122.742Aφ3 (8)

式中:Ac=-0.068 05×(1-3cos2α)Aφ=0.061 32× (1-3cos2α)AcAφ分别为黏聚力和内摩擦角的各向异性状态参数;b为中间主应力参[

20-21]α为最大主应力方向角,对于平面应变问题,角α可通过式(9)[13],即

cos(2α)=σy-σx2rr=σy-σx24+τxy2 (9)

式中:σxσyτxy分别为该单元在xy平面内水平和垂直方向的正应力和剪应力;r表示应力Mohr圆半径。

渗透系数随基质吸力的变化[

14-15,22]

Kw=awKws/ aw+bw×ua-uwcw (10)

式中:Kws为土体饱和时的渗透系数,取Kws=5×10-6 m/s,即Kws=0.018 m/h;uw为土体中的水压;aw、bwcw为材料系数,取aw=1 000,bw=0.01,cw=1.7。

饱和度随基质吸力的变化[

14-15]

Sr=Si+Sn-Sias / as+bs×ua-uwcs (11)

式中:Sr为饱和度;Si为残余饱和度,取Si=0.08;Sn为最大饱和度,取Sn=1;as、bscs为材料系数,分别取as=1、bs=1.5×10-5cs=3.5。

3.2 分级加载及分区方法

边坡初始应力状态对模型单元体最大主应力、最小主应力及剪应力等均产生一定影响;随着自重应力的逐渐增加,边坡体一定范围内的土体逐步进入塑性状态并产生一定的塑性变形。为考虑塑性应变在坡体局部累积过程中对最大主应力方向角α的影响,通过分级加载方式将各层土体的重力施加于模型。通过分级加载,实现边坡体不同区域二级分区的动态调整;与此同时,计算各二级分区各向异性强度参数并对其进行赋值。该加载共有3级,各级荷载施加值如表3所示。

表3  分级荷载施加值
Table 3  Load application values for graded loads
类别第1级/(kN·m-3)第2级/(kN·m-3)第3级/(kN·m-3)
20.00 22.00 24.00
15.00 17.00 19.00
14.00 16.00 18.00
15.86 17.86 19.86

为使土体强度的各向异性更切合实际,在分级荷载施加过程中采用了分区技术。分区采用初分、细分和精分3级控制。1)初分,每级荷载施加完成后,计算所有土体单元角α的大小,并以0°~30°、30°~60°和60°~90°为划分标准,对I、Ⅱ、Ⅲ和Ⅳ 4个大区进行初次区域划分。2)细分,初次区域划分后,由于同一区域内可能包含不同性质的土层,为保证后续划分结果的准确性,对包含不同性质土层的初次划分区域进行二次细分,即以土层界面为分界线,将该分区划分为与土层数相等的若干二级分区。3)精分,细分完成后,结合数值模拟结果并利用式(5)~式(9)各向异性强度参数计算公式,计算3次分级加载下各区域内土体的cφ值,与此同时,对细分后发生变化的区域即时进行调整。第1级加载时,取α=0°时对应的各土层强度参数。各级加载的分区演化如图3所示,各参数的演变如图4所示。

(a)  第1次加载

(b)  第2次加载

(c)  第3次加载

图3  各级加载的分区演化

Fig. 3  Partition evolution for each level of loading

(a)  第1次调整

(b)  第2次调整

(c)  第3次调整

图4  强度参数调整

Fig. 4  Strength parameter adjustment

图3表明:在3次荷载施加过程中,I、Ⅱ、Ⅲ和Ⅳ 4个初始分区的二级分区数量没有增加或减少,但二级分区的分布域发生了一定变化,且分区演化范围逐渐减小;分区演化主要发生在α为30°~60°的范围内。第2次加载后,I2、I3、Ⅱ 2、Ⅱ 3和Ⅳ 2 五个二级分区范围有所扩大,如图3(b);第3次加载后,Ⅱ2和Ⅱ 3范围进一步扩大,如图3(c)。从图4可以看出,各分区α平均值和强度参数的变化范围随着荷载的逐级施加而逐渐减小。

3.3 基于流固耦合的边坡稳定性分析

建立考虑土体分区各向异性(工况1)、未分区各向异性(工况2)和未分区各向同性(工况3)3种工况的流固耦合模型,模拟分析了边坡应力场、位移场和渗流场的变化规律。模拟所得各工况平均应力云图如图5所示,塑性应变云图如图6所示,流速云图如图7所示。

(a)  工况1

(b)  工况2

(c)  工况3

图5  平均应力云图

Fig. 5  Average stress cloud diagram

(a)  工况1

(b)  工况2

(c)  工况3

图6  塑性应变云图

Fig. 6  Plastic strain cloud diagram

(a)  工况1

(b)  工况2

(c)  工况3

图7  流速云图

Fig. 7  Flow velocity cloud diagram

图5~图7可知:工况1的平均应力最大值较工况2下降了6.4%,较工况3上升了15.8%。工况1、2、3的边坡滑动带宽依次增大,平均滑动带宽分别为2、3、5 m;3种工况的坡体滑动深度、渗流域和流速大[

22-23]逐渐增大,其中,滑动深度分别为18.0、19.0、19.7 m。模拟过程中还发现:3种工况的边坡塑性区贯通时间逐渐延长;工况1在第10个折减增量步时塑性区完全贯通,而工况2、3分别在第18、第29个折减增量步时塑性区才完全贯通,说明工况1的边坡滑动时间先于工况2、工况3。

为确定边坡的稳定性状态,以二级台阶坡肩顶点d点为追踪研究点(如图2所示),分别以有限元计算结果是否收敛(标准A)、特征点位移出现拐点(标准B)和是否形成连续的贯通区(标准C)作为评价标[

4,24],计算所得3种工况的边坡稳定性系数变化曲线如图8所示(图中ABC为判断标准,1、2和3表示工况)。

图8  稳定性系数变化曲线

Fig. 8  Stability coefficient variation curve

研究表明,标准A和标准B均可作为边坡失稳的判断依据,而标准C为边坡失稳的必要非充分条[

3];与其他两种标准相比,标准B与采用极限平衡法计算所得边坡稳定性系数的误差最[14,24]。由图8可以看出:以标准B为判断标准计算所得边坡的稳定性系数相对最小,3种工况的边坡稳定性系数分别为1.109、1.141和1.409;工况1的稳定性系数相比于工况2、工况3分别下降了2.8%和21.3%。

4 结论

1)方向角α的大小沿坡体外自由边界向坡体内部逐渐增大,且随着荷载的逐级施加,该变化过程逐渐趋于稳定。

2)考虑分区土体强度各向异性时,与其他两种工况相比,边坡体塑性区贯通时间最短,滑动带深度最浅,渗流域和流速最小。

3)采用3种判断标准确定的边坡稳定性系数中,考虑分区土体强度各向异性时的边坡稳定性系数值最小,其次为未考虑分区土体强度各异性时,而未分区各向同性时的边坡稳定性系数值最大。

参考文献

1

苏永华, 李诚诚. 强降雨下基于Green-Ampt模型的边坡稳定性分析[J]. 岩土力学, 2020, 41(2): 389-398. [百度学术] 

SU Y H, LI C C. Stability analysis of slope based on Green-Ampt model under heavy rainfall [J]. Rock and Soil Mechanics, 2020, 41(2): 389-398. (in Chinese) [百度学术] 

2

FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016 [J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. [百度学术] 

3

SUN W J, WANG G X, ZHANG L L. Slope stability analysis by strength reduction method based on average residual displacement increment criterion [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6): 4367-4378. [百度学术] 

4

RAO P P, ZHAO L X, CHEN Q S, et al. Three-dimensional limit analysis of slopes reinforced with piles in soils exhibiting heterogeneity and anisotropy in cohesion [J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 194-199. [百度学术] 

5

XU J S, LI Y X, YANG X L. Stability charts and reinforcement with piles in 3D nonhomogeneous and anisotropic soil slope [J]. Geomechanics and Engineering, 2018, 14(1): 71-81. [百度学术] 

6

罗凌晖, 周建, 蔡露, . 各向异性成层边坡的稳定性分析[J]. 中南大学学报(自然科学版), 2019, 50(8): 1883-1890. [百度学术] 

LUO L H, ZHOU J, CAI L, et al. Layered slope stability analysis considering anisotropy [J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1883-1890. (in Chinese) [百度学术] 

7

曾铃, 李光裕, 史振宁, . 降雨入渗条件下非饱和土渗流特征试验[J]. 中国公路学报, 2018, 31(2): 191-199. [百度学术] 

ZENG L, LI G Y, SHI Z N, et al. Experiment on seepage characteristics of unsaturated soil under rainfall infiltration [J]. China Journal of Highway and Transport, 2018, 31(2): 191-199. (in Chinese) [百度学术] 

8

ZENG L, BIAN H B, SHI Z N, et al. Forming condition of transient saturated zone and its distribution in residual slope under rainfall conditions [J]. Journal of Central South University, 2017, 24(8): 1866-1880. [百度学术] 

9

何晓莹. 胶凝砂砾石坝渗流场与应力场的耦合分析[D]. 西安: 西安理工大学, 2020. [百度学术] 

HE X Y. Coupling analysis of seepage field and stress field of cemented sand and gravel dam [D]. Xi,an: Xi,an University of Technology, 2020. (in Chinese) [百度学术] 

10

王正成, 毛海涛, 龙顺江, . 流固耦合的多元结构深厚覆盖层透水地基的力学特性[J]. 土木建筑与环境工程, 2017, 39(3): 151-159. [百度学术] 

WANG Z C, MAO H T, LONG S J, et al. Mechanical properties of multiple-structure thick overburden pervious foundation based on fluid-solid coupling [J]. Journal of Civil, Architectural & Environmental Engineering, 2017, 39(3): 151-159. (in Chinese) [百度学术] 

11

史卜涛, 张云, 张巍. 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2016, 38(9): 1678-1684. [百度学术] 

SHI B T, ZHANG Y, ZHANG W. Strength reduction material point method for slope stability [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1678-1684. (in Chinese) [百度学术] 

12

NIE Z B, ZHANG Z H, ZHENG H. Slope stability analysis using convergent strength reduction method [J]. Engineering Analysis with Boundary Elements, 2019, 108: 402-410. [百度学术] 

13

刘亚栋. 考虑土体强度各向异性的边坡稳定性研究[D]. 广州: 广东工业大学, 2018. [百度学术] 

LIU Y D. An investigation of slope stability considering strength anisotropy in soils [D]. Guangzhou: Guangdong University of Technology, 2018. (in Chinese) [百度学术] 

14

POTTS D M, ZDRAVKOVIĆ L. Finite element analysis in geotechnical engineering: Volume two- Application [M]. Thomas Telford Publishing, 2001. [百度学术] 

15

李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016. [百度学术] 

LI G X. Advanced Soil Mechanics [M]. 2nd edition. Beijing: Tsinghua University Press, 2016. (in Chinese) [百度学术] 

16

吴芳, 张璐璐, 郑文棠, . 基于随机多项式展开的流固耦合非饱和土坡概率反分析[J]. 岩土工程学报, 2018, 40(12): 2215-2222. [百度学术] 

WU F, ZHANG L L, ZHENG W T, et al. Probabilistic back analysis method for unsaturated soil slopes with fluid-solid coupling process based on polynomial chaos expansion [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2215-2222. (in Chinese) [百度学术] 

17

林姗, 郭昱葵, 孙冠华, . 边坡稳定性分析的虚单元强度折减法[J]. 岩石力学与工程学报, 2019, 38(Sup2): 3429-3438. [百度学术] 

LIN S, GUO Y K, SUN G H, et al. Slope stability analysis using the virtual element method and shear strength reduction technique [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup2): 3429-3438. (in Chinese) [百度学术] 

18

刘红, 冯永珍, 张吾渝, . 主应力方向角对重塑黄土各向异性的影响研究[J]. 水利水电技术(中英文), 2021, 52(3): 155-161. [百度学术] 

LIU H, FENG Y Z, ZHANG W Y, et al. Study on influence of principal stress direction angle on anisotropy of remolded loess [J]. Water Resources and Hydropower Engineering, 2021, 52(3): 155-161. (in Chinese) [百度学术] 

19

张奇莹, 徐盼盼, 钱会. 泾阳原状黄土—古土壤序列抗剪强度各向异性及其机制研究[J]. 岩石力学与工程学报, 2019, 38(11): 2365-2376. [百度学术] 

ZHANG Q Y, XU P P, QIAN H. Study on shear strength anisotropy of undisturbed loess-paleosol sequence in Jingyang County [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2365-2376. (in Chinese) [百度学术] 

20

吕擎峰, 潘松杰, 李策策, . 重塑黄土-混凝土接触面直剪试验研究[J]. 兰州大学学报(自然科学版), 2020, 56(5): 601-605, 614. [百度学术] 

LÜ Q F, PAN S J, LI C C, et al. Experimental study on direct shear of loess-concrete smooth contact surface [J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(5): 601-605, 614. (in Chinese) [百度学术] 

21

李宝平, 王智, 张玉. 关中地区重塑黄土强度特性三轴试验研究[J]. 铁道建筑, 2017, 57(8): 78-82. [百度学术] 

LI B P, WANG Z, ZHANG Y. Triaxial test study on strength characteristics of remolded loess in Guanzhong area [J]. Railway Engineering, 2017, 57(8): 78-82. (in Chinese) [百度学术] 

22

杨世豪, 苏立君, 张崇磊, . 强降雨作用下昔格达边坡渗流特性及稳定性分析[J]. 土木与环境工程学报(中英文), 2020, 42(4): 19-27. [百度学术] 

YANG S H, SU L J, ZHANG C L, et al. Analysis of seepage characteristics and stability of Xigeda Formation slope under heavy rainfall [J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 19-27. (in Chinese) [百度学术] 

23

李丞, 蔡立明, 张伟锋, . 初始渗流场对渣土场边坡降雨入渗特征及其稳定性的影响[J]. 土木与环境工程学报(中英文), 2021, 43(2): 1-9. [百度学术] 

LI C, CAI L M, ZHANG W F, et al. Influence of initial seepage field on rainfall infiltration characteristics and stability of municipal solid waste landfill [J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 1-9. (in Chinese) [百度学术] 

24

赵尚毅, 郑颖人, 张玉芳. 极限分析有限元法讲座:Ⅱ 有限元强度折减法中边坡失稳的判据探讨[J]. 岩土力学, 2005, 26(2): 332-336. [百度学术] 

ZHAO S Y, ZHENG Y R, ZHANG Y F. Study on slope failure criterion in strength reduction finite element method [J]. Rock and Soil Mechanics, 2005, 26(2): 332-336. (in Chinese) [百度学术]