摘要
纺织印染废水成分复杂,含有大量染料、重金属等有毒难降解污染物,是最难处理的工业废水之一。传统的生物处理法因耐毒性差、处理负荷低、受外部环境影响等存在一定的局限性,难以高效处理该类废水。好氧颗粒污泥胞外聚合物含量高,且含有大量氨基、羧基等官能团,此外,其具有不同的氧化还原微环境,能够有效吸附、降解污染物。但好氧颗粒污泥对印染废水中重金属的去除仍存在局限性,对染料的脱色和矿化效率仍有较大提升空间。针对纺织印染废水的污染物特性,总结并论述好氧颗粒污泥技术的优点及其对废水中重金属、偶氮染料的去除机理;综述好氧颗粒污泥处理模拟与实际纺织印染废水的研究进展,并对其运行方式进行总结分析。基于重金属离子去除存在局限性、染料降解不够彻底、实际废水具有复杂性等各种问题,展望其发展方向,以期为今后好氧颗粒污泥高效处理纺织印染废水的研究提供参考。
纺织印染行业对经济发展至关重要,但其产生的废水却是最难处理的工业废水之
重金属与偶氮染料作为典型难降解污染物,研究者们对其进行了大量研究。重金属通常以阴离子或阳离子形式存在于废水中,传统的化学、物理去除方法成本高,不利于推广,所以较多采用生物吸附法。好氧颗粒污泥(AGS)生物量和胞外聚合物(EPS)含量高,一定程度上能够抵抗毒
近年来,研究者们在实验室和实际应用规模上开展了对好氧颗粒污泥处理纺织印染废水的研
据统计,纺织印染废水在2015年已成为中国第3大工业废
污染物 | 浓度 | 参考文献 |
---|---|---|
COD | 800~1 500 mg/L |
[ |
TKN | 14~70 mg/L |
[ |
BOD5 | 250~600 mg/L |
[ |
悬浮物 | 200~500 mg/L |
[ |
色度 | 200~600倍 |
[ |
油脂 | <20 mg/L |
[ |
表面活性剂 | 6.7~21 mg/L |
[ |
锌 | 0.12~6 mg/L |
[ |
锰 | <10 mg/L |
[ |
铜 | 0.08~7.78 mg/L |
[ |
镍 | 450~700 mg/L |
[ |
铬 | 1.05~1.86 mg/L |
[ |
锑 | 412 mg/L |
[ |
染料 | 70 mg/L |
[ |
注: COD为化学需氧量;TKN为总凯氏氮;BOD5为5日生化需氧量。
在纺织印染废水中,重点关注的有毒污染物是染料类和重金属类。染料类主要是偶氮、蒽醌及酞菁类染料;大量研究表明,纺织印染废水中铜、锌、镍、镉、铬、铅等离子含量较大,这些重金属同样也具有较高的毒
处理纺织印染废水的方法主要有物理吸附、化学絮凝、化学氧化及生物降解等。物理吸附法采用的吸附剂有碳质吸附剂、无机或有机吸附剂、复合吸附剂,吸附剂成本较高且存在再生困难等问题,所以通常用于深度处理
由
一般生物处理法可以分为3种,即好氧活性污泥/生物膜法、厌氧—好氧生物法、人工湿地
由于纺织印染废水BOD/COD通常小于0.
废水排放标准日益严格,且传统纺织印染废水生物处理工艺具有耐毒性差、处理负荷低、易受外部环境影响等问题。因此,亟需更高效的生物处理法来处理纺织印染废水。
好氧颗粒污泥(AGS)是一种在高水力剪切条件下自动凝结的微生物团聚体,20世纪90年代末由Morgenroth
好氧颗粒污泥内部的分层结

图1 好氧颗粒污泥的结构
Fig. 1 Structure of aerobic granular sludge
纺织印染废水中存在大量重金属、染料等难降解有毒污染物,对传统活性污泥法而言,这些有毒污染物一定程度上抑制了微生物的活性。由于生物量高且存在分层结构,好氧颗粒污泥在一定程度上能够抵抗毒性。此外,好氧颗粒污泥胞外聚合物含量高,能够对部分重金属和染料产生吸附作用,再依靠内部不同的氧化还原环境进一步降解有机污染物。
一般来说,重金属可分为两
好氧颗粒污泥对这两类重金属离子的去除方式有所不
对含氧酸根阴离子而言,由于其本身带负电荷,与同样带负电荷的好氧颗粒污泥之间形成静电斥力,所以,在正常情况下,好氧颗粒污泥对含氧酸根阴离子重金属没有直接吸附能
Fe(Ⅲ)是常用的无机改性剂。经Fe(Ⅲ)改性后,在低pH值条件下,AGS的颗粒表面被质子化,形成≡Fe—OH
有机改性剂可将长链接枝在AGS表面,为氧酸根阴离子金属吸附提供更多位点。例如,聚乙烯亚胺(PEI)可与AGS表面EPS中的N—H基团及—OH形成酰胺基

图2 低pH值下PEI改性后的AGS去除Cr(Ⅵ)过程
Fig. 2 Removal process of Cr(Ⅵ) by AGS after PEI modification at low pH value
虽然好氧颗粒污泥对阳离子、含氧酸根阴离子均有较好的吸附效果,但这两个吸附过程对pH值的要求截然不同,造成好氧颗粒污泥难以同步去除阴、阳离子重金属。
染料是纺织印染废水中常见的有机污染物,目前研究较多的是偶氮染料的去除。偶氮染料是纺织废水中最常见的合成着色剂,是由一个或多个偶氮官能团和一个芳基和/或烷基组成的合成分子,一般分为酸性、活性、分散染料
偶氮染料中的偶氮键具有吸电子特性,使其易发生还原反应,在厌氧条件下能够被厌氧菌还原断裂生成芳香胺,如4氨基萘-1-磺酸(4A1NS)和1-萘酚-2氨基-4磺酸(1N2A4S),实现染料的脱
由于具有独特的结构,好氧颗粒污泥内部存在不同的氧化还原环境,能够同时满足厌氧、好氧条件,大大节省运行时的占地面积,且由于生物量大、胞外聚合物含量高,能够抵抗染料所带来的毒性。好氧颗粒污泥存在孔隙通道,染料与有机底物通过通道进入颗粒核心,厌氧菌对偶氮染料进行还原生成芳香胺,生成的芳香胺再从颗粒核心迁移至好氧外层,在好氧条件下进一步降解矿

图3 好氧颗粒污泥去除AR14过程
Fig. 3 Removal progress of AR14 by aerobic granular sludge
一般来说,芳香胺易发生好氧降解,但磺化的芳香胺(存在磺酸基)较难好氧生物降解,这是因为磺酸基使得该类芳香胺抵抗生物降解作用。通常采用高级氧化、培养特定菌株等方式使得中间产物完全矿化,其中高级氧化方法成本较高,而培养降解菌株的方式更经济。
芳香胺 | 降解菌株 | 参考文献 |
---|---|---|
2-氨基苯磺酸(2-ABS) | 奇异变形杆菌(Proteus mirabilis) 、炭疽杆菌(Bacillus anthracis)、荷马氏肠杆菌(Enterobacter hormaechei)、铜绿假单胞菌(Pseudomonas aeruginosa)、红沙雷氏菌(Serratia rubidaea) |
[ |
8-苯胺基-1-萘磺酸(ANSA) | 铜绿假单胞菌(Pseudomonas aeruginosa) |
[ |
4-氨基苯磺酸(4-ABS) | 菌株:Shinella yambaruensis SA1 |
[ |
为了验证好氧颗粒污泥技术对印染废水的实际处理效率并探究反应器运行工况,相关的中试和生产性试验研究也已经陆续开展。
Lourenço
污水水质 | 反应器类型 | 措施 | 处理性能(去除率) | 备注 | 参考文献 |
---|---|---|---|---|---|
COD:1 000 mg/L C:N:P=100:3.7:37 酸性红14(AR14):40 mg/L | SBR | 厌氧静态进料+厌氧-好氧反应阶段(90 min厌氧/210 min好氧)+SRT为3~15 d+H/D=2.5 +HRT=12 h + OLR=2.0 |
COD:70% 脱色率:约80% | 两种方法对中间产物(4A1NS)降解率较低 |
[ |
厌氧塞流进料+厌氧-好氧反应阶段(90 min厌氧/210 min好氧)+SRT为2~10 d+H/D=2.5 +HRT=12 h + OLR=2.0 |
COD:80% 脱色率:约80% | ||||
COD:1 000 mg/L C:N:P=100:3.7:30 酸性红14(AR14):20 mg/L | SBR | 采用厌氧-好氧反应阶段(180 min厌氧/120 min好氧)+ SRT为12 d+厌氧静态进料+H/D=2.5 +HRT=12 h+OLR=2.0 |
COD:70% 脱色率:99% | 两种方法对中间产物(4A1NS)降解率较低 |
[ |
采用间歇曝气(30 min不曝气/20 min曝气)+SRT为15 d+厌氧静态进料+H/D=2.5 +HRT=12 h + OLR=2.0 |
COD:80% 脱色率:99% | ||||
COD:1 704~2 310 mg/L C:N:P=100:5:1 活性黑KN-B:20 mg/L | SBR | SRT不控制+厌氧静态进料+连续曝气(450 min曝气)+H/D=3.9 +HRT=16 h +OLR=0.43~0.58 |
COD:92.59% 脱色率: 74.49% | 只介绍了染料的脱色效果,未介绍中间产物的降解情况 |
[ |
COD:400~800 mg/L C:N:P=120:20:3 活性艳红X-3B:50 mg/L | SBR | SRT不控制+厌氧静态进料+连续曝气(440~467 min曝气)+H/D=20+HRT=8 h +OLR未知 |
COD:97.1% 脱色率:65% | 只介绍了染料的脱色效果,未介绍中间产物的降解情况 |
[ |
COD:700 mg/L C:N:P=100:10:1 酸性红18(AR18):50 mg/L | SBR | 厌氧塞流进料+厌氧/好氧反应阶段(80 min厌氧/260 min好氧)+H/D=3.6 +HRT=9 h +OLR=2.8 |
COD>85% 脱色率:53%~55% | 对中间产物几乎没有降解作用 |
[ |
COD:1 000 mg/L C:N:P=100:3.7:37 酸性红14(AR14):20 mg/L | SBR | SRT为15 d+厌氧-好氧反应阶段(90 min厌氧/210 min好氧)+厌氧静态进料+H/D=2.5 +HRT=12 h +OLR=2.0 |
COD>80% 脱色率:65% | SRT大于25 d时,对偶氮染料还原产生的中间产物(4A1NS)可以实现完全转化 |
[ |
SRT不控制(>25 d)+厌氧-好氧反应阶段(90 min厌氧/210 min好氧)+厌氧静态进料+H/D=2.5 +HRT=12 h +OLR=2.0 |
COD>80% 脱色率:92% |
注: HRT为水力停留时间;H/D为高径比;SRT为污泥停留时间;OLR为有机负荷率(以COD计),单位kg/(
由
通过对
好氧颗粒污泥处理模拟纺织印染废水的研究还处于探索阶段,目前研究者们主要是针对各种染料的去除情况进行研究,尚未考虑到废水中的重金属等其他典型污染物的去除。
研究者们对好氧颗粒污泥处理纺织印染废水的研究不止合成废水,也包括实际纺织印染废水。实际废水的成分更为复杂,不仅含有各种染料,还存在重金属、表面活性剂等其他难降解有毒物质。
通常在早期合成废水中驯化培养好氧颗粒污泥,随后再用于处理实际废水。Manavi
最近有一项实际案
以纺织印染废水中的重金属与偶氮染料为切入点,对好氧颗粒污泥去除重金属、偶氮染料的过程和机理进行了系统总结。好氧颗粒污泥对重金属的去除以生物吸附实现,通过表面改性可以增强其对含氧酸根阴离子重金属的吸附能力。好氧颗粒污泥对偶氮染料的去除分为两个过程:厌氧还原脱色与好氧矿化。现有研究表明,好氧颗粒污泥厌氧脱色效果较好,但芳香胺的进一步好氧矿化效果有待提升。通过改变进料方式、采用间歇曝气或增加SRT可在一定程度上提高芳香胺的去除效果。目前关于好氧颗粒污泥处理实际废水的研究仍十分有限,基于以上总结,未来好氧颗粒污泥处理实际纺织印染废水的研究可以考虑以下几点:
1)好氧颗粒污泥虽然可以高效吸附重金属离子,但阳离子与含氧酸根阴离子的吸附过程所需条件相悖,意味着二者难以同步去除,因此,需要进一步探究同步去除阴、阳离子重金属的可行方法。
2)芳香胺的好氧降解过程决定了好氧颗粒污泥对偶氮染料的去除效果,而磺化芳香胺增加了降解难度。有研究发现,部分菌株可以实现对磺化芳香胺完全矿化。因此,可以筛选芳香胺降解菌株来培养好氧颗粒污泥,以提高其对偶氮染料的去除效果。
3)SBR反应器中厌氧时间的长短、进料与曝气方式会影响好氧颗粒污泥染料脱色和COD去除效果,但这些因素的组合影响尚不清楚。因此,需要进一步在纺织印染废水中量化与评估这些影响因素,进行试验参数的优化。
4)由于实际废水具有复杂性,在好氧颗粒污泥处理模拟纺织废水的过程中应充分考虑重金属等其他特征污染物的去除情况,还应该充分考虑颗粒污泥的稳定性问题。
参考文献
姜金宏, 何席伟, 熊晓敏, 等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理, 2021, 41(6): 77-87. [百度学术]
JIANG J H, HE X W, XIONG X M, et al. Research progress on toxicity characteristics and control technologies of textile dyeing wastewater [J]. Industrial Water Treatment, 2021, 41(6): 77-87. (in Chinese) [百度学术]
YASEEN D A, SCHOLZ M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review [J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1193-1226. [百度学术]
DENG D Y, LAMSSALI M, ARYAL N, et al. Textiles wastewater treatment technology: A review [J]. Water Environment Research, 2020, 92(10): 1805-1810. [百度学术]
翟俊, 柳沛松, 赵聚姣. 过一硫酸盐碱催化处理染料废水[J]. 中国环境科学, 2020, 40(2): 647-652. [百度学术]
ZHAI J, LIU P S, ZHAO J J. Treatment of dye wastewater by base catalysis of peroxymonosulfate(PMS) [J]. China Environmental Science, 2020, 40(2): 647-652. (in Chinese) [百度学术]
翟俊, 徐长健, 张子璇, 等. 含C
ZHAI J, XU C J, ZHANG Z X, et al. Impact of industrial wastewater containing C
NANCHARAIAH Y V, KIRAN KUMAR REDDY G. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications [J]. Bioresource Technology, 2018, 247: 1128-1143. [百度学术]
YEMASHOVA N, KALYUZHNYI S. Microbial conversion of selected azo dyes and their breakdown products [J]. Water Science and Technology, 2006, 53(11): 163-171. [百度学术]
TAY J H, IVANOV V, PAN S, et al. Specific layers in aerobically grown microbial granules [J]. Letters in Applied Microbiology, 2002, 34(4): 254-257. [百度学术]
FRANCA R D G, PINHEIRO H M, LOURENÇO N D. Recent developments in textile wastewater biotreatment: Dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles [J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 149-190. [百度学术]
FRANCA R D G, OLIVEIRA M C, PINHEIRO H M, et al. Biodegradation products of a sulfonated azo dye in aerobic granular sludge sequencing batch reactors treating simulated textile wastewater [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14697-14706. [百度学术]
LIU Y R, LI K, XU W Y, et al. GO/PEDOT: NaPSS modified cathode as heterogeneous electro-Fenton pretreatment and subsequently aerobic granular sludge biological degradation for dye wastewater treatment [J]. Science of the Total Environment, 2020, 700: 134536. [百度学术]
LIANG J Y, NING X N, SUN J, et al. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand [J]. Ecotoxicology and Environmental Safety, 2018, 166: 56-62. [百度学术]
METHNENI N, MORALES-GONZÁLEZ J A, JAZIRI A, et al. Persistent organic and inorganic pollutants in the effluents from the textile dyeing industries: Ecotoxicology appraisal via a battery of biotests [J]. Environmental Research, 2021, 196: 110956. [百度学术]
GITA S, SHUKLA S P, DESHMUKHE G, et al. Toxicity evaluation of six textile dyes on growth, metabolism and elemental composition (C, H, N, S) of microalgae spirulina platensis: The environmental consequences [J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(2): 302-309. [百度学术]
VELUSAMY S, ROY A, SUNDARAM S, et al. A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment [J]. Chemical Record, 2021, 21(7): 1570-1610. [百度学术]
吴晓, 崔建平. UASB+生物接触氧化组合工艺处理纺织印染废水工程实例[J]. 江西化工, 2019(4): 135-137. [百度学术]
WU X, CUI J P. UASB + biological contact oxidation combined process to treat textile printing and dyeing wastewater engineering example [J]. Jiangxi Chemical Industry, 2019(4): 135-137. (in Chinese) [百度学术]
LOTITO A M, FRATINO U, MANCINI A, et al. Effective aerobic granular sludge treatment of a real dyeing textile wastewater [J]. International Biodeterioration & Biodegradation, 2012, 69: 62-68. [百度学术]
YURTSEVER A, SAHINKAYA E, ÇINAR Ö. Performance and foulant characteristics of an anaerobic membrane bioreactor treating real textile wastewater [J]. Journal of Water Process Engineering, 2020, 33: 101088. [百度学术]
苏辉, 胡永贵, 白茹, 等. 辫带式生物填料在纺织印染废水处理中的应用[J]. 中国环保产业, 2021(3): 51-53. [百度学术]
SU H, HU Y G, BAI R, et al. Application of braided biological fillers in textile printing and dyeing wastewater treatment [J]. China Environmental Protection Industry, 2021(3): 51-53. (in Chinese) [百度学术]
MALIK A, HUSSAIN M, UDDIN F, et al. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency [J]. Water Environment Research, 2021, 93(12): 2931-2940. [百度学术]
BEZERRA DE ARAUJO C M, FILIPE OLIVEIRA DO NASCIMENTO G, RODRIGUES BEZERRA DA COSTA G, et al. Adsorptive removal of dye from real textile wastewater using graphene oxide produced via modifications of hummers method [J]. Chemical Engineering Communications, 2019, 206(11): 1375-1387. [百度学术]
PRIYA E S, SELVAN P S. Water hyacinth (Eichhornia crassipes)- An efficient and economic adsorbent for textile effluent treatment - A review [J]. Arabian Journal of Chemistry, 2017, 10: S3548-S3558. [百度学术]
KIANI R, MIRZAEI F, GHANBARI F, et al. Real textile wastewater treatment by a sulfate radicals-Advanced Oxidation Process: Peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon [J]. Journal of Water Process Engineering, 2020, 38: 101623. [百度学术]
SHOUKAT R, KHAN S J, JAMAL Y. Hybrid anaerobic-aerobic biological treatment for real textile wastewater [J]. Journal of Water Process Engineering, 2019, 29: 100804. [百度学术]
IMTIAZUDDIN S M, MUMTAZ M, MALLICK K A. Pollutants of wastewater characteristics in textile industries [J]. Journal of Basic & Applied Sciences, 2012, 8(2): 554-556. [百度学术]
GURSOY-HAKSEVENLER B H, ATASOY-AYTIS E, DILAVER M, et al. Treatability of hazardous substances in industrial wastewater: Case studies for textile manufacturing and leather production sectors [J]. Environmental Monitoring and Assessment, 2022, 194(5): 1-19. [百度学术]
AVLONITIS S A, POULIOS I, SOTIRIOU D, et al. Simulated cotton dye effluents treatment and reuse by nanofiltration [J]. Desalination, 2008, 221(1/2/3): 259-267. [百度学术]
MAHMOUD D K, SALLEH M A M, KARIM W A , et al. Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies [J]. Chemical Engineering Journal, 2012, 181/182: 449-457. [百度学术]
HASSAN M M, CARR C M. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review [J]. Chemosphere, 2021, 265: 129087. [百度学术]
ARSLAN I, BALCIOGLU I A. Advanced oxidation of raw and biotreated textile industry wastewater with O3, H2O2/UV-C and their sequential application [J]. Journal of Chemical Technology & Biotechnology, 2001, 76(1): 53-60. [百度学术]
PAŹDZIOR K, WRĘBIAK J, LEDAKOWICZ S. Treatment of industrial textile wastewater in biological aerated filters-microbial diversity analysis [J]. Fibres and Textiles in Eastern Europe, 2020, 28(1): 106-114. [百度学术]
DHAOUEFI Z, TOLEDO-CERVANTES A, GHEDIRA K, et al. Decolorization and phytotoxicity reduction in an innovative anaerobic/aerobic photobioreactor treating textile wastewater [J]. Chemosphere, 2019, 234: 356-364. [百度学术]
KHANDARE R V, GOVINDWAR S P. Phytoremediation of textile dyes and effluents: Current scenario and future prospects [J]. Biotechnology Advances, 2015, 33(8): 1697-1714. [百度学术]
MORGENROTH E, SHERDEN T, VAN LOOSDRECHT M C M, et al. Aerobic granular sludge in a sequencing batch reactor [J]. Water Research, 1997, 31(12): 3191-3194. [百度学术]
陈颖, 陈垚, 李聪, 等. 好氧颗粒污泥结构特点及稳定性研究进展[J]. 工业水处理, 2021, 41(10): 28-35. [百度学术]
CHEN Y, CHEN Y, LI C, et al. Research progress on the structural characteristics and stability of aerobic granular sludge [J]. Industrial Water Treatment, 2021, 41(10): 28-35. (in Chinese) [百度学术]
SARMA S, TAY J. Aerobic granulation for future wastewater treatment technology: Challenges ahead [J]. Environmental Science: Water Research & Technology, 2018, 4(1): 9-15. [百度学术]
MASZENAN A M, LIU Y, NG W J. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules [J]. Biotechnology Advances, 2011, 29(1): 111-123. [百度学术]
CAI F R, LEI L R, LI Y M, et al. A review of aerobic granular sludge (AGS) treating recalcitrant wastewater: Refractory organics removal mechanism, application and prospect [J]. Science of the Total Environment, 2021, 782: 146852. [百度学术]
王磊, 汪文东, 刘懂, 等. 象山港流域入湾河流水体中重金属风险评价及其来源解析 [J]. 环境科学, 2020, 41(7): 3194-3203. [百度学术]
WANG L, WANG W D, LIU D, et al. Risk assessment and source analysis of heavy metals in the river of a typical bay watershed [J]. Environmental Science, 2020, 41(7): 3194-3203. (in Chinese) [百度学术]
WANG L, LIU X, LEE D J, et al. Recent advances on biosorption by aerobic granular sludge [J]. Journal of Hazardous Materials, 2018, 357: 253-270. [百度学术]
SAJJAD M, AZIZ A, KIM K S. Biosorption and binding mechanisms of N
GAI L H, WANG S G, GONG W X, et al. Influence of pH and ionic strength on Cu(Ⅱ) biosorption by aerobic granular sludge and biosorption mechanism [J]. Journal of Chemical Technology & Biotechnology, 2008, 83(6): 806-813. [百度学术]
WANG L, WANG Y Y, LIU X, et al. A comprehensive comparison of bacterial and fungal aerobic granules: Formation, properties, surface modification, and biosorption of metals [J]. RSC Advances, 2015, 5(126): 104062-104070. [百度学术]
SUN X F, MA Y, LIU X W, et al. Sorption and detoxification of chromium ( Ⅵ) by aerobic granules functionalized with polyethylenimine [J]. Water Research, 2010, 44(8): 2517-2524. [百度学术]
马岩. 高浓度偶氮染料废水处理技术的研究[D]. 天津: 天津大学, 2008. [百度学术]
MA Y. Study on high concentration azo dye waste water treatment technology [D]. Tianjin: Tianjin University, 2008. (in Chinese) [百度学术]
顾平, 刘奎, 杨造燕. Fenton 试剂处理活性黑 KBR 染料废水研究[J]. 中国给水排水, 1997, 13(6): 16-18. [百度学术]
GU P, LIU K, YANG Z Y. A study on treatment of active black KBR dyestuff wastewater by Fenton reagent [J]. China Water & Wastewater, 1997, 13(6): 16-18. (in Chinese) [百度学术]
LOURENÇO N D, FRANCA R D G, MOREIRA M A, et al. Comparing aerobic granular sludge and flocculent sequencing batch reactor technologies for textile wastewater treatment [J]. Biochemical Engineering Journal, 2015, 104: 57-63. [百度学术]
HISAINDEE S, MEETANI M A, RAUF M A. Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms [J]. TrAC Trends in Analytical Chemistry, 2013, 49: 31-44. [百度学术]
SHAH M. Effect of anaerobic granular sludge in degradation of two azo dyes [J]. International Journal of Environmental Research, 2015, 9: 1351-1356. [百度学术]
郭亚平, 方继前, 谢练武, 等. 污泥细菌偶氮呼吸机制与偶氮染料降解矿化机理[J]. 环境工程, 2012, 30(Sup 2): 32-35. [百度学术]
GUO Y P, FANG J Q, XIE L W, et al. Review on azorespiration, biodegradation and mineralization mechanisms of azo dyes related to sludge bacteria [J]. Environmental Engineering, 2012, 30(Sup2): 32-35. (in Chinese) [百度学术]
MANAVI N, KAZEMI A S, BONAKDARPOUR B. The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater [J]. Chemical Engineering Journal, 2017, 312: 375-384. [百度学术]
YAN L K Q, FUNG K Y, NG K M. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment [J]. Environmental Technology, 2018, 39(11): 1368-1375. [百度学术]
FATIMA M, SAEED M, ASLAM M, et al. Application of novel bacterial consortium for biodegradation of aromatic amine 2-ABS using response surface methodology [J]. Journal of Microbiological Methods, 2020, 174: 105941. [百度学术]
VALLI NACHIYAR C, SUSEELA RAJAKUMAR G. Biodegradation of 8-anilino-1-naphthalenesulfonic acid by pseudomonas aeruginosa [J]. Journal of Industrial Microbiology & Biotechnology, 2006, 33(10): 845-849. [百度学术]
BIALA S, CHADHA P, SAINI H S. Biodegradation of 4-aminobenzenesulfonate by indigenous isolate Shinella yambaruensis SA1 and its validation by genotoxic analysis [J]. Biotechnology and Bioprocess Engineering, 2014, 19(6): 1034-1041. [百度学术]
JONSTRUP M, KUMAR N, MURTO M, et al. Sequential anaerobic-aerobic treatment of azo dyes: Decolourisation and amine degradability [J]. Desalination, 2011, 280(1/2/3): 339-346. [百度学术]
FRANCA R D G, ORTIGUEIRA J, PINHEIRO H M, et al. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater [J]. Water Science and Technology, 2017, 76(5/6): 1188-1195. [百度学术]
MATA A M T, PINHEIRO H M, LOURENÇO N D. Effect of sequencing batch cycle strategy on the treatment of a simulated textile wastewater with aerobic granular sludge [J]. Biochemical Engineering Journal, 2015, 104: 106-114. [百度学术]
李黔花, 李志华, 岳秀, 等. 好氧颗粒污泥处理印染废水的效能及其微生物特征[J]. 工业水处理, 2020, 40(3): 43-48. [百度学术]
LI Q H, LI Z H, YUE X, et al. Efficiency and microbial characteristics of aerobic granular sludge for textile dyeing wastewater treatment [J]. Industrial Water Treatment, 2020, 40(3): 43-48. (in Chinese) [百度学术]
田沙沙. Fenton-好氧颗粒污泥处理模拟染料废水研究[D]. 武汉: 华中科技大学, 2011. [百度学术]
TIAN S S. Treatment of simulated dye wastewater by Fenton-aerobic granular sludge process [D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese) [百度学术]
MOGHADDAM S S, MOGHADDAM M R A. Aerobic granular sludge for dye biodegradation in a sequencing batch reactor with anaerobic/aerobic cycles [J]. Clean - Soil, Air, Water, 2016, 44(4): 438-443. [百度学术]
FRANCA R D G, VIEIRA A, MATA A M T, et al. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater [J]. Water Research, 2015, 85: 327-336. [百度学术]