摘要
施氏矿物对酸性矿山废水中重金属的环境行为有一定的制约作用,但随着环境条件的改变,施氏矿物可能会溶解并产生相转变,从而引起重金属的再次释放。采用快速化学法合成不同铬、钼含量的重金属负载型施氏矿物,并采用流动柱法结合XRD、SEM及XPS等表征手段探究酸性矿山废水还原性S(-II)对负载不同含量铬和钼的施氏矿物溶解与相转变的影响。结果表明:淋滤液中重金属和硫离子浓度随淋洗天数的增加而下降,并随铬和钼负载含量的增加而明显下降,下降量大小顺序为Sch>0.1Mo0.06Cr-Sch>0.2Mo0.09Cr-Sch,而重金属铬和钼的释放过程以零级动力学模型描述最佳。XRD和XPS表征结果表明:未负载重金属施氏矿物处理组反应后产物主要为针铁矿,而负载的重金属在一定程度上提高了施氏矿物的稳定性,延迟了矿物的相转变。
施氏矿物是指在酸性矿山废水(Acid Mine Drainage,AMD)环境下,黄铁矿(FeS2)和磁黄铁矿(Fe1-xS
铬和钼是AMD环境中常见的重金属,其中铬是美国超级基金中优先控制的前20种有毒物质之
在金属硫化物矿区中存在大量的氧化还原物质,如溶解性有机质(Dissolved Organic Matter, DOM)、Fe(II)和S(-II)等,目前已有很多学者研究了DOM和Fe(II)对施氏矿物稳定性的影响及对重金属迁移转化的制约作
笔者以负载不同含量铬、钼的施氏矿物为研究对象,采用流动柱法探究S(-II)作用下施氏矿物的溶解和相转变。根据淋滤液中重金属和硫离子浓度的变化,模拟研究酸性矿山废水中负载重金属施氏矿物的环境稳定性,为利用施氏矿物解决环境污染问题的研究提供相关数据,同时,进一步了解施氏矿物作为吸附材料的可行性,并为金属硫化物矿区重金属的修复提供理论依据。
主要试剂或药品:七水硫酸亚铁(FeSO4·7H2O)、钼酸钠(Na2MoO4)、硝酸(HNO3)均为分析纯,由天津大茂化学试剂厂提供。过氧化氢(H2O2,纯度≥30%)、铬酸钾(K2CrO4,纯度为99.5%)、硫化钠(Na2S,纯度为95%)分别由西陇科学股份有限公司、麦克林、阿拉丁提供。试验用水为去离子水。
主要仪器:摇床(BSD-WX3200,上海博迅)、离心机(TDZ5-WS,湖南湘仪)、电感耦合等离子体发射光谱仪(ICP,ICPE-9820,日本岛津)、X射线衍射仪(XRD,Ultima VI,日本理学)、扫描电子显微镜(SEM,TESCAN MIRA4,捷克泰斯肯)、X射线光电子能谱仪(XPS,Thermo Scientific K-Alpha,美国赛默飞)。
施氏矿物的合成采用双氧水氧化硫酸亚铁的方
如

图1 流动柱填充示意图
Fig. 1 Schematic diagram of flow column filling
离子的测定:液体样品中Fe、Mo、Cr和S离子的浓度使用电感耦合等离子体发射光谱仪测定,测定完毕后,使用Origin绘图软件对数据进行整合,并绘制成相应的关系图。
固体样品的测定:对反应后的矿物样品进行烘干收集后,采用X射线衍射法对其进行晶型结构分析,其中X射线为Cu靶Kα射线(λ=0.154 18 nm),管电压为40 V,管电流为40 mA,扫描区域为10°~80°,扫描速度为2 (°)/min。另外,利用场发射扫描电镜分析反应后该固体的形态。利用X射线光电子能谱对反应前后元素的价态进行测定,激发源为Al Kα射线(hv = 1 486.6 eV),工作电压为12 kV,灯丝电流为6 mA,全谱扫描通能为100 eV,步长为1 eV。
合成的3种矿物元素组成及化学式如
样品 | Cr的添加量/ (mmol· | Mo的添加量/ (mmol· | 质量分数/% | 化学式 | |||
---|---|---|---|---|---|---|---|
Fe | S | Cr | Mo | ||||
Sch | 0 | 0 | 56.1 | 5.8 | Fe8O8(OH)5.12(SO4)1.44 | ||
0.1Mo0.06Cr-Sch | 1.5 | 0.5 | 55.3 | 5.5 | 0.41 | 1.24 | Fe8O8(OH)5.22(SO4)1.39Mo0.1Cr0.06 |
0.2Mo0.09Cr-Sch | 2.25 | 1 | 53.9 | 5.3 | 0.56 | 2.81 | Fe8O8(OH)5.26(SO4)1.37 Mo0.2Cr0.09 |
3种样品淋滤液中铁和硫离子浓度随淋洗天数的变化如

(a) Sch

(b) 0.1Mo0.06Cr-Sch

(c) 0.2Mo0.09Cr-Sch
图2 样品淋滤液中铁和硫离子浓度随淋洗天数变化的关系
Fig. 2 The relationship between the concentrations of iron and sulfur ions in the leachate from samples with the leaching days

图3 0.2Mo0.09Cr-Sch淋滤液中铬和钼离子浓度随淋洗天数变化的关系
Fig. 3 The relationship between the concentrations of chromium and molybdenum ions in the leachate from 0.2Mo0.09Cr-Sch with the leaching days
结合关于不同环境介质中重金属释放表观动力学的研究,模拟酸雨作用下六价铬的释放规律符合Elovich方
符号 | 物理量 | 单位 |
---|---|---|
q | 淋滤液中的离子释放量 | mg/kg |
Ci | 第i次淋滤液中的离子浓度 | mg/L |
v | 第i次淋滤液的体积 | L |
m | 矿物样品质量 | kg |
C | 淋滤液中的离子浓度 | mg/L |
C0 | 第一次淋滤液中的离子浓度 | mg/L |
a、b、k | 各模型常数 | |
t | 淋滤时间 | d |
重金属元素 | |||
---|---|---|---|
零级动力学方程C=C0-kt | 双常数方程ln q=a+bln t | Elovich方程q=aln t+b | |
Cr | 0.968 98 | 0.921 33 | 0.958 36 |
Mo | 0.933 76 | 0.755 80 | 0.807 83 |
由
淋滤液中重金属释放量: | (1) |
零级动力学方程: | (2) |
双常数方程: | (3) |
Elovich方程: | (4) |
3种合成矿物的XRD结果如

(a) 反应前矿物的XRD表征图

(b) 反应后矿物的XRD表征图
图4 矿物的XRD谱图
Fig. 4 The XRD images of minerals
Fe8O8(OH)x(SO4)y+2x H2O → 8 FeOOH+y SO | (5) |
通过快速法合成的施氏矿物呈现球状颗粒并出现聚集现象,如

(a) Sch反应前SEM图

(b) 0.1Mo0.06Cr-Sch反应前SEM图

(c) 0.2Mo0.09Cr-Sch反应前SEM图

(d) Sch反应后SEM图

(e) 0.1Mo0.06Cr-Sch反应后SEM图

(f) 0.2Mo0.09Cr-Sch反应后SEM图
图5 矿物的SEM图
Fig. 5 The SEM images of minerals
为进一步探讨S(-II)介导下矿物的反应特征以及重金属Cr和Mo的价态变化和存在形态,采用X射线光电子能谱(XPS)对反应前后0.2Mo0.09Cr-Sch固体样品中Fe、Cr和Mo三种元素进行测定,并采用XPS PEAK 41软件进行分峰拟合,结果如

(a) Fe 2p(反应前)

(b) Cr 2p(反应前)

(c) Mo 3d(反应前)

(d) Fe 2p(反应后)

(e) Cr 2p(反应后)

(f) Mo 3d(反应后)
图6 矿物的XPS图
Fig. 6 The XPS images of minerals
利用流动柱淋滤方法探究了不同铬、钼含量的负载型施氏矿物的环境稳定性。通过XRD和SEM证实了所合成的矿物为施氏矿物,且铬和钼的添加对施氏矿物结构影响较小,在还原性S(-II)的介导下,纯施氏矿物发生了明显的相转变,产物主要为针铁矿,而负载了铬和钼的施氏矿物反应前后晶型变化不明显,铬和钼的释放规律符合零级动力学方程。而总铁和硫离子的释放量大小顺序为Sch>0.1Mo0.06Cr-Sch >0.2Mo0.09Cr-Sch,表明施氏矿物的稳定性与合成时重金属的添加量成正比。
参考文献
王英旭. 矿山废水中含砷施氏矿物的环境稳定性试验研究[D]. 重庆: 重庆大学, 2018. [百度学术]
WANG Y X. Experimental study of environmental stability of as-containing schwertmannites in mine drainage [D]. Chongqing: Chongqing University, 2018. (in Chinese) [百度学术]
朱立超. 改良化学合成施氏矿物及其对地下水中Cr(Ⅵ)吸附试验研究[D]. 重庆: 重庆大学, 2017. [百度学术]
ZHU L C. Synthesis, optimization and application of schwertmannite for the remediation of Cr( Ⅵ ) contminat-d groundwater [D]. Chongqing: Chongqing University, 2017. (in Chinese) [百度学术]
BLGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters [J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2743-2758. [百度学术]
BIGHAM J M, SCHWERTMANN U, TRAINA S J, et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters [J]. Geochimica et Cosmochimica Acta, 1996, 60(12): 2111-2121. [百度学术]
王威, 冯坤, 王晓萌, 等. 施氏矿物和水铁矿对砷(Ⅲ)吸附性能的比较研究[J]. 南京农业大学学报, 2020, 43(6): 1116-1123. [百度学术]
WANG W, FENG K, WANG X M, et al. Comparison of arsenite adsorption by schwertmannite and ferrihydrite [J]. Journal of Nanjing Agricultural University, 2020, 43(6): 1116-1123. (in Chinese) [百度学术]
于长远. 流动柱法研究生物合成施氏矿物对Cr(Ⅵ)的去除效果[D]. 南京: 南京农业大学, 2012. [百度学术]
YU C Y. Study on Cr( Ⅵ ) removal by biogenicschwertmannite in a continuous flow column [D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese) [百度学术]
苏贵珍, 陆建军, 陆现彩, 等. 施氏矿物吸附C
SU G Z, LU J J, LU X C, et al. An experimental study of the adsorption of C
XIE Y Y, LU G N, YE H, et al. Role of dissolved organic matter in the release of chromium from schwertmannite: Kinetics, repartition, and mechanisms [J]. Journal of Environmental Quality, 2017, 46(5): 1088-1097. [百度学术]
XIE Y Y, LU G N, YE H, et al. Fulvic acid induced the liberation of chromium from CrO
李浙英, 梁剑茹, 柏双友, 等. 生物成因与化学成因施氏矿物的合成、表征及其对As(Ⅲ)的吸附[J]. 环境科学学报, 2011, 31(3): 460-467. [百度学术]
LI Z Y, LIANG J R, BAI S Y, et al. Characterization and As( Ⅲ ) adsorption properties of schwertmannitesynthesized by chemical or biological procedures [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 460-467. (in Chinese) [百度学术]
高美娟, 王英旭, 蔡洪英, 等. 酸碱性环境对含砷施氏矿物长期稳定性的影响[J]. 环境污染与防治, 2021, 43(4): 464-469, 474. [百度学术]
GAO M J, WANG Y X, CAI H Y, et al. Effects of acid-alkali environment on the long-term stability of arsenic-containing schwertmannites [J]. Environmental Pollution & Control, 2021, 43(4): 464-469, 474. (in Chinese) [百度学术]
李君菲, 谢莹莹, 党志, 等. 酸性矿山废水中铜在含铬施氏矿物上的吸附及其对矿物溶解与相转变的影响[J]. 环境科学学报, 2018, 38(8): 3138-3145. [百度学术]
LI J F, XIE Y Y, DANG Z, et al. Adsorption of Cu( Ⅱ ) on chromate-doped schwertmannite and effect on the mineral,s dissolution and phase transformation under acid mine drainage conditions [J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3138-3145. (in Chinese) [百度学术]
张家宁, 佟雪娇, 乔萌, 等. 不同还原剂对铬污染土壤中六价铬的修复效果研究[J]. 煤炭与化工, 2017, 40(10): 16-20, 75. [百度学术]
ZHANG J N, TONG X J, QIAO M, et al. Study on remediation of hexavalent chromium in chromium-contaminated soil by different reducing agents [J]. Coal and Chemical Industry, 2017, 40(10): 16-20, 75. (in Chinese) [百度学术]
何雨江, 陈德文, 张成, 等. 土壤重金属铬污染修复技术的研究进展[J]. 安全与环境工程, 2020, 27(3): 126-132. [百度学术]
HE Y J, CHEN D W, ZHANG C, et al. Research development of remediation technology of heavy metal chromium polluted soils [J]. Safety and Environmental Engineering, 2020, 27(3): 126-132. (in Chinese) [百度学术]
DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review [J]. Journal of Hazardous Materials, 2013, 250/251: 272-291. [百度学术]
DE FLORA S, BAGNASCO M, SERRA D, et al. Genotoxicity of chromium compounds. A review [J]. Mutation Research/Reviews in Genetic Toxicology, 1990, 238(2): 99-172. [百度学术]
CHEN M Q, LU G N, GUO C L, et al. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China [J]. Chemosphere, 2015, 119: 734-743. [百度学术]
SKIERSZKAN E K, MAYER K U, WEIS D, et al. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru [J]. Science of the Total Environment, 2016, 550: 103-113. [百度学术]
BURZLAFF A, BEEVERS C, PEARCE H, et al. New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances [J]. Regulatory Toxicology and Pharmacology, 2017, 86: 279-291. [百度学术]
TRUMBO P, YATES A A, SCHLICKER S, et al. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc [J]. Journal of the American Dietetic Association, 2001,101(3): 294-301. [百度学术]
VITHANA C L, SULLIVAN L A, BURTON E D, et al. Liberation of acidity and arsenic from schwertmannite: Effect of fulvic acid [J]. Chemical Geology, 2014, 372: 1-11. [百度学术]
ZHANG S L, JIA S Y, YU B, et al. Sulfidization of As( V )-containing schwertmannite and its impact on arsenic mobilization [J]. Chemical Geology, 2016, 420: 270-279. [百度学术]
REGENSPURG S, PEIFFER S. Arsenate and chromate incorporation in schwertmannite [J]. Applied Geochemistry, 2005, 20(6): 1226-1239. [百度学术]
XIE Y Y, YI X Y, SHAH K J, et al. Elucidation of desferrioxamine B on the liberation of chromium from schwertmannite [J]. Chemical Geology, 2019, 513: 133-142. [百度学术]
LIU L D, WANG W M, LIU L, et al. Catalytic activities of dissolved and Sch-immobilized Mo in H2O2 decomposition: Implications for phenol oxidation under acidic conditions [J]. Applied Catalysis B: Environmental, 2016, 185: 371-377. [百度学术]
LI J F, XIE Y Y, LU G N, et al. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite [J]. Environmental Science and Pollution Research, 2018, 25(16): 15492-15506. [百度学术]
ASTA M P, AYORA C, ROMÁN-ROSS G, et al. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates [J]. Chemical Geology, 2010, 271(1/2): 1-12. [百度学术]
XIE Y Y, LU G N, YANG C F, et al. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage [J]. PLoS One, 2018, 13(1): e0190010. [百度学术]
ZHANG Z, GUO G L, LI X T, et al. Effects of hydrogen-peroxide supply rate on schwertmannite microstructure and chromium(VI) adsorption performance [J]. Journal of Hazardous Materials, 2019, 367: 520-528. [百度学术]
HUANG F G, JIA S Y, LIU Y, et al. Reductive dissolution of ferrihydrite with the release of As(V) in the presence of dissolved S(-II) [J]. Journal of Hazardous Materials, 2015, 286: 291-297. [百度学术]
REGENSPURG S, BRAND A, PEIFFER S. Formation and stability of schwertmannite in acidic mining lakes [J]. Geochimica et Cosmochimica Acta, 2004, 68(6): 1185-1197. [百度学术]
BURTON E D, BUSH R T, SULLIVAN L A, et al. Schwertmannite transformation to goethite via the Fe(II) pathway: Reaction rates and implications for iron-sulfide formation [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4551-4564. [百度学术]
FERNANDEZ-MARTINEZ A, TIMON V, ROMAN-ROSS G, et al. The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate [J]. American Mineralogist, 2010, 95(8/9): 1312-1322. [百度学术]
WANG X M, YING H, ZHAO W T, et al. Molecular-scale understanding of sulfate exchange from schwertmannite by chromate versus arsenate [J]. Environmental Science & Technology, 2021, 55(9): 5857-5867. [百度学术]
HOUNGALOUNE S, HIROYOSHI N, ITO M. Stability of As( V )-sorbed schwertmannite under porphyry copper mine conditions [J]. Minerals Engineering, 2015, 74: 51-59. [百度学术]
JÖNSSON J, PERSSON P, SJÖBERG S, et al. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties [J]. Applied Geochemistry, 2005, 20(1): 179-191. [百度学术]
KIM H J, KIM Y. Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage [J]. Chemosphere, 2021, 269: 128720. [百度学术]
KUMAR N, LEZAMA PACHECO J, NOËL V, et al. Sulfidation mechanisms of Fe( Ⅲ )-(oxyhydr)oxide nanoparticles: A spectroscopic study [J]. Environmental Science: Nano, 2018, 5(4): 1012-1026. [百度学术]
LI J P, LUO Y, GAN J H, et al. The release characteristics of Cr( Ⅵ ) in contaminated soil by dynamic simulation of acid rain [J]. DEStech Transactions on Engineering and Technology Research, 2017(apetc): 517-524. [百度学术]
NEUPANE G, DONAHOE R J, BHATTACHARYYA S, et al. Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples [J]. Journal of Water Resource and Protection, 2017, 9(8): 890-907. [百度学术]
刘璞. 废钼—钴催化剂中钼的回收方法研究[D]. 兰州: 兰州理工大学, 2021. [百度学术]
LIU P. Research on the recovery of molybdenum from spent molybdenum and cobalt catalysts [D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese) [百度学术]
FONSECA B, MAIO H, QUINTELAS C, et al. Retention of Cr(VI) and Pb(II) on a loamy sand soil: Kinetics, equilibria and breakthrough [J]. Chemical Engineering Journal, 2009, 152(1): 212-219. [百度学术]
ACERO P, AYORA C, TORRENTÓ C, et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite [J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4130-4139. [百度学术]
ANTELO J, FIOL S, GONDAR D, et al. Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange [J]. Journal of Colloid and Interface Science, 2012, 386(1): 338-343. [百度学术]
陈天虎. 苏皖凹凸棒石粘土纳米尺度矿物学及地球化学[D]. 合肥: 合肥工业大学, 2003. [百度学术]
CHEN T H. Nanometer scale mineralogy and geochemistry of palygorskite clays in the border of Jiangsu and Anhui Provinces [D]. Hefei: Hefei University of Technology, 2003. (in Chinese) [百度学术]
XIE Y Y, LU G N, TAO X Q, et al. A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism [J]. Journal of Hazardous Materials, 2022, 422: 126952. [百度学术]
DIAO Z H, YAN L, DONG F X, et al. Ultrasound-assisted catalytic reduction of Cr(VI) by an acid mine drainage based nZVI coupling with FeS2 system from aqueous solutions: Performance and mechanism [J]. Journal of Environmental Management, 2021, 278: 111518. [百度学术]
DENG X H, YANG Y, MEI Y Q, et al. Construction of Fe3O4@FeS2@C@MoS2 Z-scheme heterojunction with sandwich-like structure: Enhanced catalytic performance in photo-Fenton reaction and mechanism insight [J]. Journal of Alloys and Compounds, 2022, 901: 163437. [百度学术]