摘要
城镇污水厂每天产生大量初沉污泥,初沉污泥成分复杂,无机质含量高,沉降性能不佳。等电点预处理能有效破坏初沉污泥的絮凝状态,游离亚硝酸通过有效破坏细菌结构促进有机物水解,经预处理后的污泥更有利于发酵回收利用和最终的处理处置。研究游离亚硝酸对初沉污泥作等电点预处理的效果,结果表明,在等电点条件下,初沉污泥沉降性能得到改善,CST从203.10 s降低至101.65 s,有机质在固相中得到最大程度保留,上清液中COD从1 246.59 mg/L降低至1 048.80 mg/L,同时,有效促进污泥中金属污染物溶出,减少了污泥外运处置可能导致的二次污染,但也促进了氮磷类污染物的溶出。投加300 mg/L NO
据中国住房和城乡建设部《2020年城乡建设统计年鉴》统计,全国城市已建成2 618座污水厂,每日可处理19 267.1万m³污水,其他污水处理设施每日可处理1 138万m³污
厌氧发酵产酸技术可以分解初沉污泥中的有机质,但发酵过程存在水解缓慢、转化效率
试验所用初沉污泥取自重庆市鸡冠石污水处理厂,取回的新鲜污泥经过筛后备用,测定初沉污泥相关性质,污泥总化学需氧量(TCOD)为(37.80±0.12) g/L,混合液悬浮固体浓度(MLSS)为(40.398±0.163)g/L,混合液挥发性悬浮固体浓度(MLVSS)为(17.710±0.200)g/L。初沉污泥上清液的基本性质见
pH值 | 溶解性化学需氧量(SCOD)/(mg/L) | 总氮(TN)/(mg/L) | 氨氮(NH |
---|---|---|---|
7.12±0.30 | 620.5±50.4 | 98.0±20.1 | 78.0±12.4 |
硝酸盐(NO |
磷酸盐(PO | 可挥发性脂肪酸(VFAs,以COD计)/(mg/L) | 氧化还原电位(ORP)/mV |
12.6±4.2 | 1.34±0.45 | 560.5±30.9 | -260.4±0.8 |
在采集后使用便携式多参仪(HACH哈希,美国)对污泥进行污泥温度(Primary sludge temperature,Temp)、溶解氧DO(dissolved oxygen)、氢离子浓度(pH)和氧化还原电位(Oxido-reduction potential,ORP)的测定。取回的新鲜污泥放置4 ℃冷库中沉降24 h,静沉去掉上清液中的表层漂浮杂质,并使用8目的筛网进行筛选,以筛除大于2 mm的无机物颗粒和有机物残渣。筛选完成的初沉污泥使用棕色血清瓶保存,并存放在4 ℃的冰箱内待用。
污泥的酸性预处理使用1 mol/L的HCl溶液和NaOH溶液调节pH值为1~7,使用酸度计(PB-10,Sartorius赛多利斯,德国)测定污泥pH值,待pH值稳定后使用量筒量取200 mL污泥加入250 mL血清瓶,拧紧瓶盖保证不漏气后放入35 ℃、140 r/min转速恒温水浴摇床,定期通过取样针取样并测定相关指标。
经同样处理后,投加亚硝酸盐组别根据体积投加100、200、300、400 mg/L NO
基本指标测试参考第4版的《水和废水监测分析方法》中推荐的方
2) 毛细吸水时间(CST,Capillary suction time)
CST是已知体积的悬浮液因为标准CST滤纸所产生的毛细吸收压力而滤出所需要的时间,用于判断悬浮液的脱水性能。使用CST测定仪(北京恒奥德,HDFC-10A,中国)进行测定。
3)电子显微镜分析
将反应前后的污泥样品经冷冻干燥后固定在铜片上,再经过喷金镀膜以增强导电性,通过扫描电子显微镜(ZEISS Gemini SEM 300,德国)观察初沉污泥样品微观形态的变化。
4)三维荧光光谱分析
为分析初沉污泥释放的溶解性有机物种类和特性,使用荧光分光光度计(F-7000,HITACHI,日本)对稀释后的污泥上清液进行分析。三维激发发射光谱1 200 nm/min的扫描速度以5 nm为增量,扫描范围为激发波长(Ex)200~550 nm,发射波长(Em)200~600 nm。获得的矩阵光谱数据采用Origin2018进行数据分析。参照Chen
初沉污泥的原始pH值为7.4,通过1 mol/L HCl溶液调节初沉污泥pH值,30 min的沉降效果如

(a) pH=1

(b) pH=2

(c) pH=3

(d) pH=4

(e) pH=5

(f) pH=6

(g) pH=7
图1 初沉污泥在不同pH值的沉降效果
Fig. 1 Sedimentation effect of primary sludge with different pH
在相同条件下测定初沉污泥的Zeta电位和毛细吸水时间,结果如

图2 初沉污泥在不同pH值的Zeta电位
Fig. 2 Variation of Zeta-potential of primary sludge with different pH

图3 初沉污泥在不同pH值的毛细吸水时间
Fig. 3 Variation of capillary suction time of primary sludge with different pH
由分形维数数据发现,空白条件下,污泥分形维数为2.167,在pH=1~7条件下,分形维数分别为:2.114、2.138、2.138、2.150、2.168、2.155和2.146,8组分形维数都在2.1左右,表明等电点预处理对初沉污泥的絮体颗粒的紧密程度并未造成明显改变,因此,等电点预处理主要改变了初沉污泥的带电性,通过减少污泥絮体表面电荷可能是提高沉降性能的主要原因。
采用电子扫描电镜对经过预处理和未经预处理的污泥颗粒表面进行观察,结果如

(a) pH=1

(b) pH=2

(c) pH=3

(d) pH=4

(e) pH=5

(f) pH=6

(g) pH=7

(h) 空白对照组
图4 初沉污泥经不同pH值预处理后的电镜结构
Fig. 4 Electron microscopic structure of primary sludge by free acid pretreatment with different pH
在不同pH值酸预处理后,测定污泥溶出的以Fe、Mg和Ca为代表的主要金属元素,结果如

图5 初沉污泥在不同pH值的金属元素含量
Fig. 5 Variation of metallics of primary sludge with different pH
预处理后初沉污泥上清液中的SCOD如

图6 初沉污泥在不同pH值的SCOD含量
Fig. 6 Variation of SCOD of primary sludge with different pH
2)有机质种类
将荧光区域划分成5个子区域(Aera):Aera Ⅰ和Ⅱ(λex<250 nm,λem<350 nm)表征简单的芳香蛋白类物质;Aera Ⅲ(λex<250 nm,λem>350 nm)表征类富里酸物质;Aera Ⅳ(250 nm<λex<280 nm,λem<380 nm)表征溶解性微生物代谢产物,如络氨酸、色氨酸等物质;Aera Ⅴ(λex>280 nm,λem>380 nm)表征类腐殖酸物质。
pH=3、5时是有机质分别时溶出最低和最高的情况,因此,作为典型进行对比分析。如

(a) 空白对照

(b) pH=3

(c) pH=5
图7 初沉污泥上清液中DOM的荧光EEM
Fig. 7 Fluorescence EEM for DOM of the supernatant in the primary sludge
酸预处理前后对污泥溶出的氮磷污染物进行测定,结果如

图8 初沉污泥上清液中NH
Fig. 8 The variation of NH
溶解性NH
这些结果表明,等电点预处理可以有效保留污泥中的有机质,但也促进了初沉污泥中氮、磷元素的释放。
通过以上试验发现,pH=3是初沉污泥的等电点,可以有效改善污泥的沉降性和脱水性,但不能有效保留氮磷元素。因此,在实验中,在等电点预处理后,首先对比是否投加亚硝酸盐对有机质和氮磷元素释放的影响,确定亚硝酸盐处理的有效性,再定量投加亚硝酸盐,测定氮磷元素释放量以获得最佳投加量和最佳处理时长。
O组为无预处理空白对照组,A组为1 mol/L HCl预处理至pH=3组,B组为1 mol/L HCl预处理pH=3后投加300 mg/L NO
在24 h预处理后分别取样测定其中的有机质变化情况,根据相关研究结

图9 污泥上清液中SCOD随预处理酸种类的变化情况
Fig. 9 The variation of SCOD in the supernatant of primary sludge with different acid after pre-treatment
投加亚硝酸盐后,测定预处理24 h前后污泥上清液中氮磷污染物的含量,结果如图

图10 亚硝酸等电点预处理后初沉污泥上清液中氮磷元素初始含量
Fig.10 The initial content of nitrogen and phosphorus pollutants in the supernatant of primary sludge after free nitrous isoelectric point pretreatment
注: O为空白组;A为pH=3, NO

图11 亚硝酸等电点预处理1 d后初沉污泥上清液中氮磷元素含量
Fig. 11 The content of nitrogen and phosphorus pollutants in the supernatant of primary sludge after 1 d with free nitrous isoelectric point pretreatment
注: O为空白组;A为pH=3, NO
PO
同时,在仅盐酸预处理后极短时间内,PO
在投加不同含量的游离亚硝酸盐的条件下,每隔15 min取样测定其中的主要污染物。O组为仅使用盐酸预处理组别,A组为使用盐酸预处理后,投加100 mg/L NO
1)氮类污染物的溶出变化
氮类污染物的主要存在形式为NH

图12 游离亚硝酸预处理不同时间后污泥上清液中NH
Fig. 12 The variation of NH
5个组别的NH
针对NO

图13 游离亚硝酸预处理不同时间后污泥上清液中NO
Fig. 13 The variation of NO

图14 游离亚硝酸预处理不同时间后污泥上清液中NO
Fig. 14 The variation of NO
由
虽然投加亚硝酸盐从外界输入了额外的氮元素负荷,但依然对于氮元素释放有一定的抑制作用,并且可以被快速消耗。
2)磷酸盐污染物
如

图15 游离亚硝酸预处理不同时间后污泥上清液中PO
Fig. 15 The variation of PO
测样结果表明,随预处理时间的增加,PO
PO
综上所述,可以认为,投加300 mg/L NO
通过等电点的酸预处理,可以有效改善初沉污泥沉降性能差的问题,减少了上清液中的有机物质的溶出,促进了金属物质的溶出,但是同时导致了NH
参考文献
城乡建设统计年鉴[R]. 北京: 住房和城乡建设部, 2020. [百度学术]
China urban-rural construction statistical yearbook [R]. Beijing: Ministry of Housing and Urban-Rural Development of the People,s Republic of China, 2020(in Chinese). [百度学术]
戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020, 72(6): 30-34, 4. [百度学术]
DAI X H. Applications and perspectives of sludge treatment and disposal in China [J]. Science, 2020, 72(6): 30-34, 4. (in Chinese) [百度学术]
GONZALEZ A, HENDRIKS A T W M, VAN LIER J B, et al. Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step [J]. Biotechnology Advances, 2018, 36(5): 1434-1469. [百度学术]
WANG X B, CHEN T T, QI X F, et al. Organic matter release from primary sludge by mechanical cutting [J]. Journal of Water Process Engineering, 2021, 40: 101896. [百度学术]
ESKICIOGLU C, KENNEDY K J, DROSTE R L. Initial examination of microwave pretreatment on primary, secondary and mixed sludges before and after anaerobic digestion [J]. Water Science and Technology, 2008, 57(3): 311-317. [百度学术]
BOZKURT Y C, APUL O G. Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion [J]. Current Opinion in Environmental Science & Health, 2020, 14: 1-9. [百度学术]
WANG D B, HUANG Y X, XU Q X, et al. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge [J]. Bioresource Technology, 2019, 275: 163-171. [百度学术]
王琦, 石寒松, 李文超, 等. 超声处理初沉污泥研究[J]. 广东化工, 2017, 44(1): 87-88, 102. [百度学术]
WANG Q, SHI H S, LI W C, et al. Research on ultrasonic treatment of primary sludge [J]. Guangdong Chemical Industry, 2017, 44(1): 87-88, 102. (in Chinese) [百度学术]
NABI M, ZHANG G M, ZHANG P Y, et al. Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production [J]. Bioresource Technology, 2019, 286: 121378. [百度学术]
KOR-BICAKCI G, ESKICIOGLU C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion [J]. Renewable and Sustainable Energy Reviews, 2019, 110: 423-443. [百度学术]
LU D, SUN F Q, ZHOU Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment [J]. Bioresource Technology, 2018, 266: 60-67. [百度学术]
XU Y, ZHENG L K, GENG H, et al. Enhancing acidogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from physical structure and interfacial thermodynamics [J]. Water Research, 2020, 185: 116237. [百度学术]
XU Y, LU Y Q, DAI X H, et al. Enhancing anaerobic digestion of waste activated sludge by solid-liquid separation via isoelectric point pretreatment [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14774-14784. [百度学术]
李卓君, 王旭东, 吕永涛, 等. 碱热处理对污泥颗粒及脱水性能的影响特性[J]. 中国给水排水, 2019, 35(13): 11-15. [百度学术]
LI Z J, WANG X D, LÜ Y T, et al. Influence of alkaline-thermal treatment on sewage sludge particle and dewatering performance [J]. China Water & Wastewater, 2019, 35(13): 11-15. (in Chinese) [百度学术]
窦川川, 刘玉玲, 赵鹏鹤, 等. 碱预处理对剩余污泥DOM的溶出特征及平行因子分析[J]. 中国给水排水, 2021, 37(19): 14-21. [百度学术]
DOU C C, LIU Y L, ZHAO P H, et al. Effect of alkaline pretreatment on DOM dissolution characteristics of excess sludge and parallel factor analysis [J]. China Water & Wastewater, 2021, 37(19): 14-21. (in Chinese) [百度学术]
BAHREINI G, NAZARI L, HO D, et al. Enzymatic pre-treatment for enhancement of primary sludge fermentation [J]. Bioresource Technology, 2020, 305: 123071. [百度学术]
ZHEN G Y, LU X Q, KATO H, et al. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives [J]. Renewable and Sustainable Energy Reviews, 2017, 69: 559-577. [百度学术]
ZHEN G Y, LU X Q, LI Y Y, et al. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion [J]. Applied Energy, 2014, 128: 93-102. [百度学术]
NAOUM C, FATTA D, HARALAMBOUS K J, et al. Removal of heavy metals from sewage sludge by acid treatment [J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2001, 36(5): 873-881. [百度学术]
WANG X L, ZHANG L, PENG Y Z, et al. Enhancing the digestion of waste activated sludge through nitrite addition: Insight on mechanism through profiles of extracellular polymeric substances (EPS) and microbial communities [J]. Journal of Hazardous Materials, 2019, 369: 164-170. [百度学术]
国家环境保护总局, 水和废水监测分析方法编委会. 水和废水监测分析方法 [M]. 北京: 中国环境科学出版社, 2002. [百度学术]
State Environmental Protection Agency, Editorial Board of Methods for Monitoring and Analysis of Water and Wastewater. Methods for monitoring and analysis of water and wastewater [M]. Beijing: China Environmental Science Press, 2002. (in Chinese). [百度学术]
CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [百度学术]
孟彩霞. 焦化废水中亚硝酸盐和固体悬浮物对CODcr值的影响研究[J]. 价值工程, 2010, 29(36): 242-243. [百度学术]
MENG C X. The influence of nitrite and suspended solid of coking wastewater to CODcr [J]. Value Engineering, 2010, 29(36): 242-243. (in Chinese) [百度学术]
李航, 董立春, 吕利平. 低C/N值污水强化生物脱氮性能研究[J]. 中国给水排水, 2022, 38(7): 80-85. [百度学术]
LI H, DONG L C, LÜ L P. Enhanced biological nitrogen removal performance of low carbon to nitrogen ratio wastewater [J]. China Water & Wastewater, 2022, 38(7): 80-85. (in Chinese) [百度学术]
巩有奎, 冯华, 任丽芳, 等. pH调控反硝化除磷过程PAOs-GAOs竞争及N2O释放特性[J]. 环境科学与技术, 2021, 44(7): 145-153. [百度学术]
GONG Y K, FENG H, REN L F, et al. Utilization of pH to regulate the PAOs-GAOs competition and N2O release in denitrification phosphorus removal process [J]. Environmental Science & Technology, 2021, 44(7): 145-153. (in Chinese) [百度学术]