摘要
相对传统除磷吸附剂,镧基材料对磷的亲和力强且对环境友好,因而成为近年来新型除磷吸附剂的研究热点。但在实际应用中,镧基材料存在回收难、镧利用率低等问题。以酸活化后的蛭石为载体,采用溶剂热法引入Fe3O4赋予其磁性,沉淀法负载镧(La),制备一种镧利用率高、可高效除磷及磁分离的磁性载镧酸化蛭石吸附剂(LaFeAVE)。通过吸附实验及多种表征手段对经和未经酸活化的磁性载镧蛭石吸附剂(LaFeAVE 和LaFeVE)进行对比分析,以探究二者在结构及除磷性能上的差别。此外,还探究了LaFeAVE的吸附除磷机制。结果表明,酸活化可除去蛭石中大部分Al2O3等杂质,使其比表面积增大,提高了La在蛭石上的负载量,LaFeAVE的除磷能力比未改性蛭石提高了15.97倍。LaFeAVE对磷的吸附符合Langmuir等温模型和准二级动力学方程,35 °C下对磷的最大吸附量为40.01 mg/g,是LaFeVE的1.30倍,达到吸附平衡的时间比LaFeVE缩短了一半,在pH值为3.00~8.00的范围内的磷去除率均在93%以上,比LaFeVE的pH适用范围更广。LaFeAVE的再生性强于LaFeVE,重复再生5次后,对磷的吸附量下降20%。静电作用、配位体交换及球内络合反应是LaFeAVE吸附除磷的主要机制。
在水环境中,适量的磷能维持水生态的平衡,而过量的磷易引起水体富营养化。因此,研究除磷技术有重大意义。吸附法因具有成本效益高、易操作、产泥量少等优势而应用普遍,目前开发高效、易再生、可从水中快速分离的新型除磷吸附剂是污水除磷方面的主要研究方
蛭石是2∶1型晶层结构的层状硅酸盐黏土矿物,其分布广泛且资源丰富,天然且无毒,是一种低成本的环保材料,常用于冶金、建筑、土壤改良等领域。其隔热性能好、化学稳定性强、阳离子交换容量
为此,笔者以酸化和未酸化蛭石为载体,通过引入Fe3O4赋予其磁性后负载La,制备了两种磁性载镧蛭石吸附剂,并对比两者在结构及吸附除磷性能上的差异,同时探究LaFeAVE吸附除磷机制,为用蛭石制备除磷吸附剂提供一定的理论依据。
试剂:水合氯化镧、盐酸(36%~38%)、蛭石(购于河北灵寿县)、乙二醇、PEG6000、氢氧化钠、酒石酸锑钾、六水合三氯化铁、抗坏血酸,乙酸钠、磷酸二氢钾、钼酸铵、无水乙醇、均为分析纯;利用去离子水及KH2PO4配制磷酸盐母液,通过稀释获得所需特定浓度的磷酸盐溶液,其浓度均以P定量。
主要仪器:水热反应釜、烘箱、六联搅拌器、电子天平、pH计、紫外分光光度计、恒温振荡器。
将5 g蛭石(VE)倒入100 mL 1 mol/L盐酸溶液中,于温度25 °C、转速200 r/min条件下搅拌24 h后用纯水洗涤并抽滤分离,所得材料烘干后研磨过200目筛备用,记作AVE。
在35 mL乙二醇溶液中加入1.00 g AVE、1.69 g FeCl3·6H2O、0.405 g乙酸钠、0.382 g PEG6000搅拌5 h后移入反应釜200 °C反应8 h,再磁选分离后反复清洗,经烘干后磨成粉末。称取1.00 g该材料于100 mL纯水中,加入0.317 g水合氯化镧,搅拌4 h后用10% NaOH调其pH值为11.50。静置24 h后磁选分离并烘干,记作LaFeAVE。
采用场发射扫描电子显微镜(SEM, Zeiss Sigma 300)观察材料表面形貌;X射线衍射仪(XRD, Flex 600)分析材料晶型结构;X射线光电子能谱仪(XPS, Thermo Fisher Scientific K-Alpha)分析材料表面组成;傅里叶红外光谱仪(FTIR, Bruker Tensor 27)分析材料特征官能团;电感耦合等离子体发射光谱仪(ICP-OES, Agilent 700)测定材料元素含量;X射线能谱仪(EDS,XFlash 6)对材料所含元素进行半定量分析;振动样品磁强计(VSM,Quantum Design)分析材料的磁性;吸附分析仪(BET, TriStar 3000 V6.05)测定样品的比表面积;X射线荧光光谱仪(XRF,Panalytical E3)分析材料的化学成分。
在三角烧瓶中加入50 mL一定浓度的磷酸盐溶液及吸附剂,用0.1 mol/L NaOH和0.1 mol/L HCl溶液调节pH,200 r/min振荡8 h后测定磷浓度。吸附剂对磷在t时刻单位吸附量qt,mg/g;吸附平衡时单位吸附量qe,mg/g;磷去除率η,%可分别通过
(1) |
(2) |
(3) |
式中:c0为初始磷浓度,mg/L;ct为t时刻磷浓度,mg/L;ce为吸附平衡时磷浓度,mg/L;V为溶液的体积,mL;m为吸附剂投加量,g。
配制50 mL初始磷浓度分别为5、10、20、40、60、80、100、120、150 mg/L的磷酸盐溶液,调节其pH值为6.00,分别加入两种吸附剂各0.1 g,200 r/min反应8 h,在25、35 °C两种温度条件下进行等温吸附实验。采用Langmuir和Freundlich吸附模型拟合实验数据。
Langmuir等温吸附方程为
(4) |
Freundlich等温吸附方程为
(5) |
式中:ce为吸附平衡时磷浓度,mg/L;qe为吸附平衡时对磷的单位吸附量,mg/g;qm为吸附剂对磷最大单位吸附量,mg/g;KL为Langmuir吸附模型吸附常数,L/mg;KF为Freundlich 吸附模型吸附常数,mg/g。

(a) VE

(b) FeVE

(c) LaFeVE

(d) LaFeVE

(e) AVE

(f) FeAVE

(g) LaFeAVE

(h) LaFeAVE
图1 材料的SEM谱图
Fig. 1 SEM images of material
吸附剂 | 元素质量比/% | La元素含量/ (mg/g) | ||||||
---|---|---|---|---|---|---|---|---|
C | O | Mg | Al | Si | Fe | La | ||
LaFeVE | 7.100 | 23.63 | 1.500 | 1.490 | 5.380 | 37.92 | 22.98 | 87.465 |
LaFeAVE | 5.050 | 38.51 | 8.320 | 6.560 | 16.030 | 23.62 | 1.900 | 94.486 |
吸附剂 | SBET/( | d/nm | Vtotal/(c |
---|---|---|---|
VE | 5.236 1 | 17.36 | 0.023 |
AVE | 101.58 | 3.498 | 0.089 |
LaFeVE | 13.066 | 25.18 | 0.086 |
LaFeAVE | 19.812 | 24.62 | 0.112 |

图2 材料的VSM谱图
Fig. 2 VSM images of material

图3 材料的XRD谱图
Fig. 3 XRD images of material
蛭石 | 化合物质量占比/% | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | K2O | |
酸化前 | 53.77 | 0.930 0 | 15.84 | 9.010 | 0.150 0 | 2.470 | 1.080 | 1.820 |
酸化后 | 65.53 | 2.410 0 | 10.19 | 7.480 | 0.089 0 | 4.290 | 2.470 | 3.498 |
LaFeVE和LaFeAVE分别在25、35 °C时对磷的吸附等温曲线如

图4 LaFeVE和LaFeAVE对磷的吸附等温线
Fig. 4 Phosphorus absorption isotherms of LaFeVE and LaFeAVE
吸附剂 | 温度/°C | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|---|
qm/(mg/g) | KL/(L/mg) | Rf/(mg/g) | 1/n | ||||
LaFeVE | 25 | 27.36 | 11.173 | 0.995 6 | 10.123 8 | 0.220 5 | 0.989 1 |
35 | 30.67 | 9.858 8 | 0.993 7 | 10.146 2 | 0.272 6 | 0.991 1 | |
LaFeAVE | 25 | 36.66 | 7.655 0 | 0.998 1 | 11.176 3 | 0.277 0 | 0.964 7 |
35 | 40.01 | 7.193 7 | 0.992 5 | 12.283 5 | 0.287 6 | 0.947 4 |
材料 | 温度/°C | qm/(mg/g) | La(ω) | P/La | 有无磁性 | 文献 |
---|---|---|---|---|---|---|
VE | 25 | 2.160 | 无 | 本文 | ||
AVE | 25 | 2.630 | 无 | 本文 | ||
FeVE | 25 | 2.680 | 有 | 本文 | ||
FeAVE | 25 | 3.030 | 有 | 本文 | ||
LaFeAVE | 25 | 36.66 | 9.450 | 1.738 4 | 有 | 本文 |
LaFeVE | 25 | 27.36 | 8.750 | 1.408 8 | 有 | 本文 |
La改性凹凸棒土 | 25 | 12.08 | 4.260 | 1.268 0 | 无 |
[ |
La(OH)3改性蛭石 | 25 | 79.60 | 31.520 | 1.019 1 | 无 |
[ |
La改性膨润土 | 25 | 12.02 | 3.170 | 1.697 1 | 无 |
[ |
Al改性皮沙砂岩 | 25 | 4.210 | 无 |
[ | ||
铁改性热处理凹凸棒颗粒 | 25 | 4.270 | 无 |
[ | ||
MgO改性生物炭 | 25 | 28.20~29.22 | 无 |
[ | ||
改性钢渣 | 25 | 1.977 | 无 |
[ |

图5 LaFeVE和LaFeAVE对磷的反应动力学曲线
Fig. 5 Phosphorus absorption kinetic of LaFeVE and LaFeAVE
吸附剂 | 温度/°C | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
qe/(mg/g) | k1/min | qe/(mg/g) | k2/(g/(mg·min)) | ||||
LaFeVE | 25 | 19.149 3 | 0.055 50 | 0.942 2 | 19.294 6 | 0.009 90 | 0.994 2 |
LaFeAVE | 25 | 24.596 1 | 0.179 2 | 0.902 6 | 25.022 5 | 0.012 2 | 0.992 0 |

图6 LaFeVE和LaFeAVE的重复利用性
Fig. 6 Reusability of LaFeVE and LaFeAVE during phosphorus adsorption
LaFeVE和LaFeAVE在初始pH值为2.00~12.00时的磷去除率如
如

(a) 不同pH值下吸附剂的磷去除率

(b) 反应后溶液pH值变化
图7 pH值对LaFeVE和LaFeAVE吸附磷的影响
Fig. 7 Effect of pH on the adsorption of phosphorus by LaFeVE and LaFeAVE

(a) VE、AVE、LaFeAVE的FTIR谱图

(b) LaFeAVE吸附前后的FTIR谱图
图8 材料的FTIR谱图
Fig. 8 FTIR images of material

(a) 全谱图

(b) La 3d

(c) Fe 2p
图9 LaFeAVE吸附前后的XPS谱图
Fig. 9 XPS spectra of LaFeAVE before and after adsorption
1)酸活化过程可除去蛭石中大部分Al2O3等杂质,使其比表面积增大,提高了La在蛭石上的负载量,LaFeAVE对磷的吸附能力比未改性蛭石提高了15.97倍。
2)LaFeAVE和LaFeVE对磷的吸附均符合Langmuir等温模型和准二级动力学方程,35 °C下LaFeAVE的最大吸附量为40.01 mg/g,是LaFeVE(30.67 mg/g)的1.30倍。LaFeAVE达到吸附平衡的时间为4 h,比LaFeVE(8 h)缩短了一半。LaFeAVE在pH值为3.00~8.00时的磷去除率均在93%以上,比LaFeVE的pH适用范围更广。LaFeAVE的P/La为1.738 4,高于LaFeVE(1.408 8),具有较高的镧利用率。
3)5次循环再生后,LaFeAVE对磷的吸附量基本保持稳定,比原来减少了20%,与LaFeVE(减少33%)相比有更好的重复利用性。此外,两者在5次循环再生后仍具有较好的磁性。
4)LaFeAVE吸附除磷机制主要是静电作用、配位体交换及球内络合反应。
参考文献
万琼, 贾真真, 喻盈捷, 等. 吸附除磷剂的研究进展[J]. 当代化工研究, 2020(21): 4-6. [百度学术]
WAN Q, JIA Z Z, YU Y J, et al. Research progress in phosphorus-removal absorbents [J]. Modern Chemical Research, 2020(21): 4-6. (in Chinese) [百度学术]
ASHOUR E A, TONY M A. Eco-friendly removal of hexavalent chromium from aqueous solution using natural clay mineral: Activation and modification effects [J]. SN Applied Sciences, 2020, 2(12): 1-13. [百度学术]
BUGARČIĆ M, LOPIČIĆ Z, ŠOŠTARIĆ T, et al. Vermiculite enriched by Fe(III) oxides as a novel adsorbent for toxic metals removal [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106020. [百度学术]
MORAES D S, RODRIGUES E M S, LAMARÃO C N, et al. New sodium activated vermiculite process. Testing on C
GU S Q, WANG L, MAO X Y, et al. Selective adsorption of Pb(II) from aqueous solution by triethylenetetramine-grafted polyacrylamide/vermiculite [J]. Materials (Basel, Switzerland), 2018, 11(4): 514. [百度学术]
LIMA R R C, DE LIMA P D S, GREATI V R, et al. Sodium-modified vermiculite for calcium ion removal from aqueous solution [J]. Industrial & Engineering Chemistry Research, 2019, 58(22): 9380-9389. [百度学术]
GAO J Q, ZHAO J, ZHANG J S, et al. Preparation of a new low-cost substrate prepared from drinking water treatment sludge (DWTS)/bentonite/zeolite/fly ash for rapid phosphorus removal in constructed wetlands [J]. Journal of Cleaner Production, 2020, 261: 121110. [百度学术]
WANG B, ZHANG W, LI L, et al. Novel talc encapsulated lanthanum alginate hydrogel for efficient phosphate adsorption and fixation [J]. Chemosphere, 2020, 256: 127124. [百度学术]
SYRMANOVA K K, SULEIMENOVA M T, KOVALEVA A Y, et al. Vermiculite absorption capacity increasingby acid activation [J]. Oriental Journal of Chemistry, 2017, 33(1): 509-513. [百度学术]
MAQUEDA C, PEREZ-RODRIGUEZ J L, ŠUBRT J, et al. Study of ground and unground leached vermiculite [J]. Applied Clay Science, 2009, 44(1/2): 178-184. [百度学术]
PADILLA-ORTEGA E, LEYVA-RAMOS R, MENDOZA-BARRON J. Role of electrostatic interactions in the adsorption of cadmium(II) from aqueous solution onto vermiculite [J]. Applied Clay Science, 2014, 88/89: 10-17. [百度学术]
陈玉婷. 镧改性磁性稻壳基生物炭除磷性能研究[D]. 武汉: 华中科技大学, 2019: 24-26. [百度学术]
CHEN Y T. Preparation and characterization of the phosphate removal by La-modified magnetic biochar adsorbent [D]. Wuhan: Huazhong University of Science and Technology, 2019: 24-26. (in Chinese) [百度学术]
PASTOR P O, RODRÍGUEZ-CASTELLON E, GARCÍA A R. Uptake of lanthanides by vermiculite [J]. Clays and Clay Minerals, 1988, 36(1): 68-72. [百度学术]
XIAO L, LI Y, KONG Q, et al. From wastes to functions: preparation of layered double hydroxides from industrial waste and its removal performance towards phosphates [J]. Environmental Science and Pollution Research International, 2021: 10.1007/s11356-21. [百度学术]
YANG J, YUAN P, CHEN H Y, et al. Rationally designed functional macroporous materials as new adsorbents for efficient phosphorus removal [J]. Journal of Materials Chemistry, 2012, 22(19): 9983. [百度学术]
苗琛琛, 毛林强, 陶德晶, 等. 镧改性凹凸棒土的制备及其对水中磷酸盐的吸附[J]. 环境工程学报, 2016, 10(12): 7069-7074. [百度学术]
MIAO C C, MAO L Q, TAO D J, et al. Preparation of lanthanum-modified attapulgite and its adsorption of phosphate from water [J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7069-7074. (in Chinese) [百度学术]
HUANG W Y, LI D, LIU Z Q, et al. Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La(OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents [J]. Chemical Engineering Journal, 2014, 236: 191-201. [百度学术]
林娟, 姚佳雯, 魏笑, 等. 镧改性膨润土对磷吸附特性、机理与影响因素[J]. 环境科学与技术, 2021, 44(1): 7-12. [百度学术]
LIN J, YAO J W, WEI X, et al. Adsorption performance, mechanism and influence factors of phosphorus on phoslock [J]. Environmental Science & Technology, 2021, 44(1): 7-12. (in Chinese) [百度学术]
WANG J P, ZHEN Q, XIN J W, et al. Phosphorus removal from aqueous solution using Al-modified Pisha sandstone [J]. Journal of Cleaner Production, 2021, 308: 127255. [百度学术]
耿健, 杨盼, 唐婉莹. 铁改性热处理凹凸棒颗粒对水体磷的去除效果[J]. 环境工程, 2020, 38(10): 114-119. [百度学术]
GENG J, YANG P, TANG W Y. Phosphorus removal by the iron modified thermally treated granular attapulgite clay [J]. Environmental Engineering, 2020, 38(10): 114-119. (in Chinese) [百度学术]
OGINNI O, YAKABOYLU G A, SINGH K, et al. Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources [J]. Journal of Environmental Chemical Engineering, 2020, 8(2): 103723. [百度学术]
郑怀礼, 葛亚玲, 寿倩影, 等. 改性钢渣的制备及其吸附除磷性能[J]. 土木建筑与环境工程, 2016, 38(6): 129-134. [百度学术]
ZHENG H L, GE Y L, SHOU Q Y, et al. Preparation of modified steel slag and its phosphate removal performance [J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(6): 129-134. (in Chinese) [百度学术]
WANG Z J, MIAO R R, NING P, et al. From wastes to functions: A paper mill sludge-based calcium-containing porous biochar adsorbent for phosphorus removal [J]. Journal of Colloid and Interface Science, 2021, 593: 434-446. [百度学术]
付军, 范芳, 李海宁, 等. 铁锰复合氧化物/壳聚糖珠: 一种环境友好型除磷吸附剂[J]. 环境科学, 2016, 37(12): 4882-4890. [百度学术]
FU J, FAN F, LI H N, et al. Fe-Mn binary oxide impregnated chitosan bead(FMCB): An environmental friendly sorbent for phosphate removal [J]. Environmental Science, 2016, 37(12): 4882-4890. (in Chinese) [百度学术]
ZHANG X N, LIN X Y, HE Y, et al. Adsorption of phosphorus from slaughterhouse wastewater by carboxymethyl konjac glucomannan loaded with lanthanum [J]. International Journal of Biological Macromolecules, 2018, 119: 105-115. [百度学术]
LIU J Y, ZHOU Q, CHEN J H, et al. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber [J]. Chemical Engineering Journal, 2013, 215/216: 859-867. [百度学术]
苏小丽. 河北灵寿蛭石的结构与表面性质调控及其反应机理[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所), 2019: 41-70. [百度学术]
SU X L. Modification on structure and surface property of vermiculite from Linshou Hebei and the mechamism involved [D]. Guangzhou: Chinese Academy of Sciences (Guangzhou In-stitute of Geochemistry), 2019: 41-70. (in Chinese). [百度学术]
LI R H, WANG J J, ZHOU B Y, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute [J]. Bioresource Technology, 2016, 215: 209-214. [百度学术]
WANG Z H, SHEN D K, SHEN F, et al. Phosphate adsorption on lanthanum loaded biochar [J]. Chemosphere, 2016, 150: 1-7. [百度学术]
LIAO T W, LI T, SU X D, et al. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal [J]. Bioresource Technology, 2018, 263: 207-213. [百度学术]
朱鹏飞, 任静, 罗凤琳, 等. La/酸化膨润土吸附剂的表征与除磷性能[J]. 光谱实验室, 2013, 30(5): 2521-2524. [百度学术]
ZHU P F, REN J, LUO F L, et al. Characterization and phosphorus removal performance of lanthanum/acidified bentonite sorbent [J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(5): 2521-2524. (in Chinese) [百度学术]
ZHANG L, WANG Z H, XU X, et al. Insights into the phosphate adsorption behavior onto 3D self-assembled cellulose/graphene hybrid nanomaterials embedded with bimetallic hydroxides [J]. Science of the Total Environment, 2019, 653: 897-907. [百度学术]