摘要
水环境中的纳米塑料(NPs)污染已成为全球性的环境问题。大型溞(Daphnia magna)作为淡水中重要的初级消费者之一,常被运用于基于生物操纵的富营养化水体修复,但关于NPs对大型溞摄食行为的影响尚不清晰。以大型溞和聚苯乙烯纳米塑料(PSNPs,1 000 nm)为研究对象,探究了大型溞21 d内对产毒铜绿微囊藻(Toxic Microcystis aeruginosa)和斜生栅藻(Scenedesmus obliquus)摄食倾向的变化及其生理响应。结果表明,以单一产毒铜绿微囊藻作为食物来源时,大型溞受到的发育和生殖毒性最强;与对照组(单一斜生栅藻饲喂)相比,高浓度产毒铜绿微囊藻组大型溞体内超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量分别升高至对照组的3.97倍和4.55倍,总产卵次数和体长分别降低了73%和13%,且大型溞对产毒铜绿微囊藻的滤食率呈随时间延长而升高的趋势。但在PSNPs(3.56 mg/L)暴露下,在初始藻密度为微囊藻:栅藻为1:9和微囊藻:栅藻为2.5:7.5处理组中,大型溞的滤食能力都显著下降;对照组添加PSNPs后,大型溞对斜生栅藻的滤食率降低了32%。在产毒铜绿微囊藻和斜生栅藻共培养体系中,大型溞对产毒铜绿微囊藻的滤食率比对照组降低了66%,缓解了大型溞所受的发育和生殖毒性,但不利于降低微囊藻的生物量。
纳米塑料(NPs,粒径≤1 000 nm)是水环境中广泛分布的新型污染
在水环境中,浮游动物作为水生食物网中的重要一环,在能量流动和物质循环过程中起着举足轻重的作用。其对水生系统的环境污染变化十分敏感,常被用作水体重要指示类群。其中大型溞由于具有分布广、生活周期短、繁殖快、易于在实验室培养且对水环境中多种有毒化学物质敏感性等特
为揭示NPs对大型溞摄食倾向的影响,以大型溞为受试生物,以PSNPs(1 μm)急性毒性试验结果中96h-LC50的5%为暴露浓度,以斜生栅藻和产毒铜绿微囊藻进行不同的食物配比,探究大型溞在PSNPs暴露下对不同藻类摄食倾向的变化及其生长繁殖能力的响应,重点关注PSNPs对大型溞摄食产毒铜绿微囊藻能力的影响,以期为PSNPs对水生态系统食物链结构的影响和生态风险评估提供理论依据。
试验所用大型溞、斜生栅藻(FACHB 416)、产毒铜绿微囊藻(FACHB 905)均购自中国科学院水生生物研究所(武汉),PSNPs单分散液(1 000 nm,50 mg/mL)购自中科雷鸣科技有限公司(北京),并使用扫描电子显微镜(SEM,ZEISS Gemini 300,蔡司,德国)、傅里叶红外光谱(FTIR,Nicolet iS50,赛默飞世尔,美国)、纳米粒度及Zeta电位分析仪(Nano ZS90,马尔文,英国)进行表
参照OECD国际标
选用出生6~24 h的健康幼溞,取LC50的5%为PSNPs的暴露剂量,进行21 d暴露试验,在每周的第2、4、7天换液,新换液的总藻密度均为2×1
每次换液时,分别计算大型溞对每种藻的滤食率。换液时取旧摇匀的培养液,该方法在显微镜下采用血球计数板计数法,分别计算斜生栅藻和铜绿微囊藻的藻密
F=V(ln C0-ln Ct)/(nt)
I=F(C0Ct
式中:V为体积,μL;n为大型溞个数;C0为藻细胞初始密度。cells/mL;Ct为藻细胞最终密度,cells/mL;t为时间,h。
在监测大型溞对不同藻取食倾向的变化趋势的同时,记录每组10只大型溞的怀第一胎时间、怀卵数和总产卵次数,并在21 d试验结束后用光学显微镜观察每组大型溞的体貌特征。
参照试验组设置,每组3个平行,每个平行含200只健康幼溞,进行21 d试验,其间移除新生幼溞和死亡个体,在第7、14、21天,分别从每个体系中取出50只大型溞进行超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量的测定。将取出的大型溞用PBS冲洗3次,将大型溞以1 g∶9 mL的比例添加4 ℃的PBS,置冰中用玻璃匀浆器研磨。匀浆后在4 ℃下4 000 r/min离心10 min收集上清液,用试剂盒(南京建成生物工程研究所)测定SOD活性和MDA含量,并用BCA总蛋白试剂盒(南京建成生物工程研究所)测定离心前匀浆的总蛋白含量,进行数据归一化处理。
表征结果显示,PSNPs的平均粒径(Z-average)为1 043.33 nm(

(a) PSNPs的粒径分布

(b) PSNPs的扫描电镜图

(c) PSNPs的FTIR谱图

(d) PSNPs对大型溞的急性毒性
图1 PSNPs的表征和对大型溞急性毒性
Fig. 1 Characterization of PSNPs and their acute toxicity to Daphnia magna
S组中(
值得注意的是,整个试验过程中,PSNPs的暴露显著降低了大型溞对产毒微囊藻的滤食。T1S+NPs组中,大型溞在第21天对产毒铜绿微囊藻的摄食百分比(占总摄食量的比例)仅为12.07%(

(a) 大型溞在S组和S+NPs组中对斜生栅藻的滤食率

(b) 大型溞在T1S组和T1S+NPs组中对斜生栅藻和产毒铜绿微囊藻的滤食率

(c) 大型溞在T2.5S组和T2.5S+NPs组中对斜生栅藻和产毒铜绿微囊藻的滤食率
图2 大型溞对斜生栅藻和产毒铜绿微囊藻的滤食率
Fig. 2 The feeding rate of Daphnia magna to Scenedesmus oblique and Toxic Microcystis aeruginosa
在S组(对照组)中,PSNPs暴露对大型溞SOD活性(

(a) 大型溞SOD活性的动态变化

(b) 大型溞MDA含量的动态变化
图3 大型溞氧化系统响应的动态变化
Fig. 3 Dynamic changes in the response of the oxidative system of Daphnia magna
在T2.5S组中,大型溞体内SOD和MDA含量均呈现出随时间上升的趋势,并于第21天达到峰值(60.90 U/mg prot和2.03 nmol/mg prot),分别为对照组的3.97和4.55倍。在T2.5S+NPs组中,PSNPs的暴露显著降低了由产毒铜绿微囊藻诱导的氧化损伤,在第7、14、21天的SOD含量分别比T2.5S组同期降低了26.95%、42.71%和55.76%,MDA含量降低了0.41%、29.49%和42.15%。总体而言,在产毒铜绿微囊藻与斜生栅藻混合饲喂组中,PSNPs的暴露降低了大型溞所受的氧化损伤。
S组中,大型溞在试验第6天怀卵(

(a) 大型溞的第1次怀卵时间

(b) 大型溞的第1次产卵个数

(c) 大型溞的总产卵次数
图4 大型溞的繁殖能力变化
Fig. 4 The response of reproductive ability in Daphnia Magna
如

图5 大型溞的体长形貌
Fig. 5 The body length and morphology of Daphnia magna
摄食行为是水生动物最基本的行为之一,可直观反映环境变化对其机体的影响,一般来说,大型溞能够牧食1~70 μm的颗
An
产毒微囊藻与栅藻混合饲喂时,大型溞受到了显著的氧化损伤、生殖毒性,表现出明显的MDA积累、繁殖能力降低和体长减小,且以上负面效应在T2.5S组中比在T1S组中更显著。Vilar
值得注意的是,还发现了在栅藻和产毒微囊藻混合饲喂时,随着PSNPs暴露时间的延长,大型溞倾向于取食更多的栅藻,产毒微囊藻的摄食百分比明显降低,且SOD活性和MDA含量均同比低于没有PSNPs暴露的处理组。这一现象在T2.5S+NPs组中比在T1S+NP组中更明显,在第21天时,大型溞对产毒微囊藻的摄食百分比分别比T2.5S组和T1S组降低了22%和10%。MNPs进入浮游动物消化系统后能积累并形成“伪饱腹感”已经达成共
基于此,认为高产毒微囊藻占比组中由PSNPs暴露介导的大型溞摄食倾向的变化可能如

图6 PSNPs改变大型溞摄食倾向的机理图
Fig. 6 Mechanism of PSNPs altering the grazing propensity of Daphnia magna
大型溞作为水环境中分布广泛的初级消费者,由于其较好的对各类浮游植物的牧食能力和较强的繁殖能力,常被用于富营养化水体的生态环境修复,特别是因其能够一定程度上控制有害蓝藻水华的发生,而一度被称为“食藻虫
PSNPs作为单一胁迫时,大型溞对斜生栅藻的摄食率在21 d内降低了32%,并对大型溞产生由营养不良所主导的发育和生殖毒性。高浓度铜绿微囊藻暴露导致大型溞总产卵次数和体长分别降低了73%和13%。而当大型溞受到PSNPs和产毒铜绿微囊藻的双重胁迫时,其对斜生栅藻的滤食率降低了32%,对产毒铜绿微囊藻的滤食率降低了66%。这种捕食倾向的改变一方面减缓了由藻毒素主导的大型溞所受到的发育和生殖毒性,可能有利于维持大型溞的“抑藻能力”,另一方面可能减弱斜生栅藻对铜绿微囊藻的竞争,进而影响浮游植物群落结构。
参考文献
HARTMANN N B, HÜFFER T, THOMPSON R C, et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris [J]. Environmental Science & Technology, 2019, 53(3): 1039-1047. [百度学术]
COLE M, GALLOWAY T S. Ingestion of nanoplastics and microplastics by Pacific Oyster larvae [J]. Environmental Science & Technology, 2015, 49(24): 14625-14632. [百度学术]
ROCHMAN C M. Microplastics research-from sink to source [J]. Science, 2018, 360(6384): 28-29. [百度学术]
BESSELING E, REDONDO-HASSELERHARM P, FOEKEMA E M, et al. Quantifying ecological risks of aquatic micro- and nanoplastic [J]. Critical Reviews in Environmental Science and Technology, 2019, 49(1): 32-80. [百度学术]
SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China [J]. Environmental Pollution, 2016, 216: 711-719. [百度学术]
MOORE C, LATTIN G, ZELLERS A. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California [J]. Revista De Gestão Costeira Integrada - Journal of Integrated Coastal Zone Management, 2011, 11(1): 65-73. [百度学术]
MAO Y F, AI H N, CHEN Y, et al. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period [J]. Chemosphere, 2018, 208: 59-68. [百度学术]
BESSELING E, WANG B, LÜRLING M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. Magna [J]. Environmental Science & Technology, 2014, 48(20): 12336-12343. [百度学术]
ZHOU R R, LU G H, YAN Z H, et al. Interactive transgenerational effects of polystyrene nanoplastics and ethylhexyl salicylate on zebrafish [J]. Environmental Science: Nano, 2021, 8(1): 146-159. [百度学术]
刘建超, 马雨辰, 张凌玉, 等. 红霉素对大型溞生殖、生长和基因表达的生态毒理效应[J]. 生态学报, 2022, 42(19): 8105-8113. [百度学术]
LIU J C, MA Y C, ZHANG L Y, et al. Eco-toxicological effects of erythromycin on reproduction, growth and gene expression of Daphnia Magna [J]. Acta Ecologica Sinica, 2022, 42(19): 8105-8113. (in Chinese) [百度学术]
程瑞雪, 邓斌, 王亚玲, 等. 大型溞(Daphnia magna)线粒体基因组的测定与序列分析[J]. 湖泊科学, 2016, 28(2): 414-420. [百度学术]
CHENG R X, DENG B, WANG Y L, et al. Complete mitochondrial genome sequence of Daphnia Magna(Crustacea: Cladocera) from Huaihe in China [J]. Journal of Lake Sciences, 2016, 28(2): 414-420. (in Chinese) [百度学术]
王茜, 郭鹄飞, 王兰. 镉对大型溞摄食能力和相关生理指标的影响[J]. 水生生物学报, 2018, 42(3): 616-621. [百度学术]
WANG Q, GUO H F, WANG L. Effect of cadmium on the feeding capacity and physiological status of Daphnia Magna [J]. Acta Hydrobiologica Sinica, 2018, 42(3): 616-621. (in Chinese) [百度学术]
姜航, 丁剑楠, 黄叶菁, 等. 聚苯乙烯微塑料和罗红霉素对斜生栅藻(Scenedesmus obliquus)和大型溞(Daphnia Magna)的联合效应研究[J]. 生态环境学报, 2019, 28(7): 1457-1465. [百度学术]
JIANG H, DING J N, HUANG Y J, et al. Combined effects of polystyrene microplastics and roxithromycin on the green algae (Scenedesmus obliquus) and waterflea (Daphnia Magna)[J]. Ecology and Environmental Sciences, 2019, 28(7): 1457-1465. (in Chinese) [百度学术]
CHEN Q Q, LI Y, LI B W. Is color a matter of concern during microplastic exposure to Scenedesmus obliquus and Daphnia Magna? [J]. Journal of Hazardous Materials, 2020, 383: 121224. [百度学术]
方道艳, 施丽梅, 李朋富, 等. 温度对铜绿微囊藻群体培养体系中细菌群落组成及稳定性的影响[J]. 湖泊科学, 2021, 33(6): 1660-1674. [百度学术]
FANG D Y, SHI L M, LI P F, et al. Effects of temperature on composition and stability of bacterial community in colonial Microcystis aeruginosa culture systems [J]. Journal of Lake Sciences, 2021, 33(6): 1660-1674. (in Chinese) [百度学术]
BOJADZIJA SAVIC G, COLINET H, BORMANS M, et al. Cell free Microcystis aeruginosa spent medium affects Daphnia Magna survival and stress response [J]. Toxicon: Official Journal of the International Society on Toxinology, 2021, 195: 37-47. [百度学术]
LI Y R, ZHU Y Y, MA L L, et al. Toxic microcystis reduces tolerance of daphnia to increased chloride, and low chloride alleviates the harm of toxic microcystis to daphnia [J]. Chemosphere, 2020, 260: 127594. [百度学术]
DEMOTT W R, GULATI R D, VAN DONK E. Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large‐bodied species by interfering filaments of cyanobacteria [J]. Limnology and Oceanography, 2001, 46(8): 2054-2060. [百度学术]
LADDS M, JANKOWIAK J, GOBLER C J. Novel high throughput sequencing - fluorometric approach demonstrates Microcystis blooms across western Lake Erie are promoted by grazing resistance and nutrient enhanced growth [J]. Harmful Algae, 2021, 110: 102126. [百度学术]
HE Y X, LI J, CHEN J C, et al. Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells [J]. Science of the Total Environment, 2020, 723: 138180. [百度学术]
WANG P, LI Q Q, HUI J, et al. Metabolomics reveals the mechanism of polyethylene microplastic toxicity to Daphnia magna [J]. Chemosphere, 2022, 307: 135887. [百度学术]
李勤, 李尚谕, 熊雄, 等. 微塑料对大型溞的急性毒性研究[J]. 水生生物学报, 2021, 45(2): 292-298. [百度学术]
LI Q, LI S Y, XIONG X, et al. Study on acute toxicity of microplastic to Daphnia Magna [J]. Acta Hydrobiologica Sinica, 2021, 45(2): 292-298. (in Chinese) [百度学术]
LI M Y, TANG T, YUAN F Y, et al. Protective effects of small heat shock proteins in Daphnia Magna against heavy metal exposure [J]. Science of the Total Environment, 2022, 848: 157565. [百度学术]
万蕾, 朱伟, 赵联芳. 氮磷对微囊藻和栅藻生长及竞争的影响[J]. 环境科学, 2007, 28(6): 1230-1235. [百度学术]
WAN L, ZHU W, ZHAO L F. Effect of nitrogen and phosphorus on growth and competition of M. aeruginosa and S. quadricauda [J]. Environmental Science, 2007, 28(6): 1230-1235. (in Chinese) [百度学术]
MAO R F, LANG M F, YU X Q, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals [J]. Journal of Hazardous Materials, 2020, 393: 122515. [百度学术]
ODA S, TATARAZAKO N, WATANABE H, et al. Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs [J]. Chemosphere, 2005, 61(8): 1168-1174. [百度学术]
TKACZYK A, BOWNIK A, DUDKA J, et al. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review [J]. Science of the Total Environment, 2021, 763: 143038. [百度学术]
巩宁, 韩旭, 李佳璠, 等. 不同粒径聚乙烯微粒对大型溞的生物毒性效应[J]. 海洋环境科学, 2020, 39(2): 169-176. [百度学术]
GONG N, HAN X, LI J F, et al. Toxic effects of different particle size polyethylene microbeads on Daphnia magna [J]. Marine Environmental Science, 2020, 39(2): 169-176. (in Chinese) [百度学术]
SADLER D E, BRUNNER F S, PLAISTOW S J. Temperature and clone-dependent effects of microplastics on immunity and life history in Daphnia magna [J]. Environmental Pollution, 2019, 255: 113178. [百度学术]
RIST S, BAUN A, HARTMANN N B. Ingestion of micro- and nanoplastics in Daphnia magna-Quantification of body burdens and assessment of feeding rates and reproduction [J]. Environmental Pollution, 2017, 228: 398-407. [百度学术]
TROTTER B, WILDE M V, BREHM J, et al. Long-term exposure of Daphnia magna to polystyrene microplastic (PS-MP) leads to alterations of the proteome, morphology and life-history [J]. Science of the Total Environment, 2021, 795: 148822. [百度学术]
AN D, NA J, SONG J, et al. Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna [J]. Chemosphere, 2021, 271: 129591. [百度学术]
CASTRO-CASTELLON A T, HORTON A A, HUGHES J M R, et al. Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels [J]. Science of the Total Environment, 2022, 816: 151638. [百度学术]
VILAR M C P, SILVA FERRÃO-FILHO ADA, AZEVEDO S M F O. Single and mixed diets of the toxic Cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii differently affect Daphnia feeding behavior [J]. Food Webs, 2022, 32: e00245. [百度学术]
AKBAR S, HUANG J, ZHOU Q M, et al. Elevated temperature and toxic Microcystis reduce Daphnia fitness and modulate gut microbiota [J]. Environmental Pollution, 2021, 271: 116409. [百度学术]
HUANG J, LI Y R, ZHOU Q M, et al. Non-toxic and toxic Microcystis aeruginosa reduce the tolerance of Daphnia pulex to low calcium in different degrees: Based on the changes in the key life-history traits [J]. Chemosphere, 2020, 248: 126101. [百度学术]
LÜRLING M, VERSCHOOR A M. FO-spectra of chlorophyll fluorescence for the determination of zooplankton grazing [J]. Hydrobiologia, 2003, 491(1): 145-157. [百度学术]
WRIGHT S L, ROWE D, THOMPSON R C, et al. Microplastic ingestion decreases energy reserves in marine worms [J]. Current Biology, 2013, 23(23): R1031-R1033. [百度学术]
方海燕, 谢冰寒, 侯淼淼, 等. PVC微塑料对大型溞繁殖及应激与能量相关基因表达的影响[J]. 环境科学学报, 2021, 41(5): 2056-2062. [百度学术]
FANG H Y, XIE B H, HOU M M, et al. Effect of PVC microplastic on reproduction and energy-related gene expression of Daphnia magna [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 2056-2062. (in Chinese) [百度学术]
丁灿, 周其胤, 贺振洲, 等. 食藻虫联合高效菌剂处理富营养化水体[J]. 环境工程, 2019, 37(12): 109-112, 143. [百度学术]
DING C, ZHOU Q Y, HE Z Z, et al. Treatment of water eutrophication with Daphnia Magna and a new high-efficiency fungicide [J]. Environmental Engineering, 2019, 37(12): 109-112, 143. (in Chinese) [百度学术]
GEBREHIWOT M, KIFLE D, TRIEST L. Grazing and growth rate of a cyclopoid copepod fed with a phytoplankton diet constituted by a filamentous cyanobacterium [J]. Hydrobiologia, 2019, 828(1): 213-227. [百度学术]