网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

蛋白絮凝剂去除水中新兴污染物研究进展  PDF

  • 易晓慧 1
  • 张世欣 1,2
  • 陈垚 1,2
  • 唐晓旻 3
  • 郑怀礼 4
  • 李森 1
  • 唐龙庆 1
1. 重庆交通大学,河海学院,重庆 400074; 2. 重庆交通大学,环境水利工程重庆市工程实验室,重庆 400074; 3. 重庆工商大学 环境与资源学院,重庆 400067; 4. 重庆大学 三峡库区生态环境教育部重点实验室,重庆 400045

中图分类号: X703.5

最近更新:2024-03-07

DOI:10.11835/j.issn.2096-6717.2023.025

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

蛋白絮凝剂是一类由动植物或微生物产生的,可使液体中不易降解的固体悬浮颗粒聚集和沉淀的特殊高分子物质。蛋白絮凝剂因具有良好的吸附性能和絮凝性可被直接作为某些地区的净水剂。近年来,随着天然水处理剂的蓬勃发展,蛋白絮凝剂作为高效、绿色、环保的絮凝剂广受科研人员的青睐。总结蛋白絮凝剂的提取纯化方法、分子结构和有效官能团等特性,概括蛋白絮凝剂用于去除水中新兴污染物的研究现状、性能和机理,并对蛋白絮凝剂去除水环境中的新兴污染物进行展望。蛋白絮凝剂作为水处理药剂具有一定优势,未来可通过对蛋白絮凝剂进行深入研究,发掘其在去除水中新兴污染物的潜在价值,为提高水环境安全提供一种新途径。

随着社会的不断发展,人类活动在带来技术进步的同时,也对环境造成了严重的污染。传统污水处理技术难以有效去除水中包括抗生素、个人护理产品(PPCPs)、农药和内分泌干扰物(EDCs)在内的新兴污染[

1]。虽然这些新兴污染物在水中的浓度很低,但通过生物的吸收,以及食物链的逐级累积,其痕量的环境浓度往往会造成较大的危害和环境风[2]。近年来,新兴污染物的不断检出给水污染控制带来了新的挑战,也成为国际性的研究热点和亟须解决的问题。

污水处理厂中常用的去除水中新兴污染物的处理技术有臭氧氧化法、活性炭吸附法、生物膜反应器法、混凝/絮凝法[

3]。传统饮用水处理工艺对新兴污染物的处理效果有限,且受外界因素影响较[4]。需通过增加深度处理工艺或预处理工艺使新兴污染物得到有效去除,增加了水处理成本和操作复杂度。现今绝大多数水厂仍使用混凝-沉淀-过滤-消毒的工艺。而一些新兴污染物为溶解性强的小分子有机物,大多带化学性质稳定的环状结构,水处理药剂中很少具有与之结合的活性基团和化学键;砂滤池的空间位阻-孔径筛分作用难以将其去除;进入消毒工艺的抗生素能与氯气、次氯酸钠等反应生成消毒副产物,进一步诱导细菌产生耐药性。不同分子式的新兴污染物在水处理过程中的影响和去除率差异很大,大部分新兴污染物会“逃脱”水处理工艺进入供水管[5]。因此,寻找常规工艺中去除新兴污染物的新方法具有必要性和前沿性。混凝/絮凝是传统的水处理技术,在水处理中得到了广泛的应用。研究混凝/絮凝技术处理水中新兴污染物的可行性是一个很有意义的研究方向。混凝剂/絮凝剂大致可分为3类:无机混凝剂和有机絮凝剂及微生物絮凝[6]。传统絮凝剂对常规污染物的去除效果明显,但会产生不可生物降解的污泥,引起众多生态问[7]。从人体健康和生态环境的角度出发,使用高效、环保的天然有机高分子絮凝剂是水处理药剂发展的重要方[8]。近年来,人们越来越多地寻找天然高分子聚合物作为水处理的药剂,以动植物蛋白和微生物代谢物为原料,经过酶催化合成、分级提纯形成的蛋白絮凝剂受到水处理药剂领域的广泛关注,具有絮凝效果显著、投加量少、安全无毒、可生物降解和产生污泥体积小等优[9],例如,种子蛋白和微生物分泌蛋白。

笔者针对蛋白絮凝剂用于去除水中新兴污染物的研究进展进行综述,概括新兴污染物的危害和现今水处理技术去除该类污染物的瓶颈,总结蛋白絮凝剂去除水中新兴污染物的絮凝条件、影响去除率的因素、去除效果和去除机理,为其大规模应用于水处理领域提供依据。

1 水中新兴污染物的来源和特征

新兴污染物包括药物、个人护理产品、内分泌干扰物、饮用水消毒副产物和微塑料等。新兴污染物可通过多种途径进入水[

10]。中国从各流域、湖泊和水处理厂中检测出不同的新兴污染物,虽然其在水体中的含量不高,是常规污染物的千分之一或百万分之一,但能在极低的浓度下对人体健康和生态环境构成威[11-12]。新兴污染物具有环境持久性和致癌性的特点,容易在动植物体内累积并随食物链富集和传[13-14]。新兴污染物中的抗生素会对水生生物造成慢性或急性毒性。新冠疫情背景下,各类消毒剂的大量使用加剧了水环境中抗生素的浓度,促使耐药细菌的产生,加剧了耐药细菌的传播和变异;个人护理产品虽不会对水生生物造成急性毒性,但多氯联苯会引起水生野生动物的种群数量减少;消毒副产物具有致癌性、细胞毒性或遗传毒性;水环境中残留的农药对动物有不可逆的伤害,可能与儿童白血病和帕金森等疾病相关;微塑料能通过饮用水等多种途径进入生物体,且难以被消化吸收。微塑料会对生物的消化道造成不同程度的损伤,影响某些生物的繁殖率和体内酶活性,环境中的微塑料还能影响生物群落组成和氮循环。此外,微塑料还吸附其他污染物,例如,能致癌的多氯联苯和多溴联苯醚等污染物,被生物摄入后再释放到它们体内,造成更严重的后[15-16]。废水中的工业染料会阻碍水生生物的光合作用,偶氮染料中偶氮基团可转化为芳香胺,增加人体癌变的风[17-18]

2 混凝/絮凝法去除水中新兴污染物的研究现状

在常规的饮用水处理工艺中,絮凝既是主体澄清工艺,又是深度处理技术前至关重要的预处理手段,为整个水处理流程的关键部分和核心基[

6,19-20]。在去除溶解性有机物方面,絮凝剂的研究和应用极为薄弱甚至是空白,但这个领域是现今饮用水中巨大的隐患和亟待解决的难题。传统的无机铝、铁盐混凝剂和阳离子聚丙烯酰胺类絮凝剂有较高的性价比,但在处理微量新兴污染物时存在去除率低、效果不稳定和特异性差等缺点。笔者在前期实验中发现,亚铁盐混凝剂对四环素、诺氟沙星和磺胺甲恶唑的平均去除率仅为6%,不能有效阻止电中性的磺胺类抗生素进入饮用水系统,只能通过架桥和卷扫作用部分去除以分子形式存在的磺胺类抗生素,且控制混凝剂投加量及pH值等条件亦无法进一步提高去除效果。Vieno[21]通过混凝-沉淀-过滤的组合工艺去除饮用水中的诺氟沙星、环丙沙星和氧氟沙星药物,发现混凝对3种抗生素的平均去除率为3%,砂滤进一步提高了10%的去除率。研究表明,活性硅酸絮凝剂在常规剂量下对聚对苯二甲酸乙二醇酯微塑料的去除率最高达54.7%,去除率偏低,聚氯化铝在高剂量下对其去除率高达91.45%,但其投加量太大,水解产物会威胁人体健[22]。面对日趋严峻的新兴污染物现状,亟待在研究和开发新型有机高分子絮凝剂上取得更多突破。

新兴污染物是为了实现特定功能而开发的化学物质,有些药物分子的主要靶向作用点是细菌细胞壁、细胞膜、蛋白质及核酸。从其生物诱导功能出发,寻找一种带有絮凝功能的天然生物材料与之结合是提高去除率的有效途径。Kebede[

23-24]发现用辣木籽提取物作为絮凝剂处理含5种药物的污水,可达82.0%~86.0%的去除率。邢[25]发现微生物絮凝剂MFX与4种常规絮凝剂相比,对雌激素、卡马西平和磺胺甲恶唑等新兴污染物有较好的去除效果。天然高分子絮凝剂的种类众多,蛋白类絮凝剂因其具有处理效果好、绿色环保、价格低廉、无毒副作用等优势,在水处理领域具有很大的潜力。

3 蛋白絮凝剂的种类及分子结构

3.1 蛋白絮凝剂的分类和提取流程

目前蛋白絮凝剂的来源主要有3种:辣木籽提取物、微生物发酵产物和动物胶原蛋白。辣木是温热带地区生长的一种多用途植物,辣木籽中含有丰富的净水活性蛋白,辣木籽及其提取物能够明显去除水中的细[

26]和泥沙含量,降低水的浊[27],该蛋白具有无毒害作用、安全、易于生物降解等优点。γ-聚谷氨酸是微生物产生的胞外氨基酸聚合物,在其分子链上具有大量的活性较高的游离侧链羧基,带有大量负电荷,可作为微生物絮凝剂用于多种污废水的净化处[28]。胶原蛋白是哺乳动物体内含量最多的蛋白质,主要存在于动物的皮肤、骨、软骨及肌腱等组织中,提取胶原蛋白的材料基本集中在水产(鱼皮、鱼骨、鱼鳞等)和畜禽屠宰(猪皮、猪骨、牛骨等)[29]。在制革过程中,由于片皮、修边以及削匀等工段产生的废皮块,经水解可得到胶原蛋[30]。这些水解胶原蛋白分子中含有大量的活性基团,如羟基、羧基、氨基和酰胺基[31]。将水解胶原蛋白直接应用于絮凝时,这些活性基团可提供丰富的结合位点,具有一定的捕捉水体中杂质颗粒的能力。但是,由于水解胶原蛋白的电荷中和能力较弱,难以与杂质颗粒发生有效的电中和。因此,需对水解胶原蛋白进行适当的化学改性,可提高胶原蛋白絮凝剂的絮凝能力。蛋白絮凝剂有多种提取方法,主要为沉淀法、超滤浓缩法、凝胶过滤色谱法。其中,沉淀法是破坏蛋白质分子的水化作用或者减弱分子间同性相斥作用的因子或破坏分子的水化作用,使蛋白质在水中的溶解度降低而沉降下来转化为固体的分离方法。用沉淀法提取蛋白质操作简单、成本低廉,但其纯化效果达不到作为絮凝剂所需要求,仅适用于部分实验室蛋白质提取和某些生产目的制备过程。超滤浓缩法是通过外力使蛋白质溶液通过滤膜而仍保留目的蛋白质的方法,适用于蛋白质或酶的浓缩脱盐。使用超滤浓缩法提取蛋白质的产量高、操作简单、节省时间,但分子量相差越小,分离效果越[32]。凝胶过滤色谱法是利用分子量或分子形状的差异来分离蛋白质的方法,被广泛运用于蛋白质分离纯化、相对分子质量的测定和脱盐等方[33]。凝胶过滤色谱法具有操作方便、样品回收率高、蛋白活性收率高等优点,但其分辨率低。提取纯化得到分子量为6 000~100 000的多肽链或蛋白质分[34-36]。尽管蛋白絮凝剂分子量不高,但其絮凝效果好于分子量为几十万的阳离子聚丙烯酰胺类絮凝剂,这归功于蛋白质独特的结构和官能团。图1为以辣木籽为例,提取辣木籽蛋白的具体操作流程。

图1  辣木籽蛋白提取工艺的主要流程示意图

Fig. 1  Schematic diagram of the extraction process of Moringa oleifera seed protein

3.2 蛋白絮凝剂的分子结构

结构决定性能,性能反映结构。探究蛋白絮凝剂分子结构,可评估其在水处理过程中的絮凝效果。蛋白絮凝剂分子中含有大量的酰胺、胺、羧酸等活性官能团,不仅为去除水中的新兴污染物提供了丰富的结合点位,还可扩展已形成的絮体的附着面积,产生更大的絮[

37]。表征和分析蛋白絮凝剂中的有效官能团、元素化合价态和蛋白质空间结构等特性仍为今后研究的重点。目前可通过X射线光电子能谱分析蛋白絮凝剂中的元素,利用傅里叶红外光谱分析蛋白絮凝剂中的官能团,利用热差-热重分析法评价蛋白絮凝剂的热稳定性,通过扫描电子显微镜分析蛋白絮凝剂的表面微观形态。用X射线衍射法、圆二色谱法、核磁共振技术(NMR)和十二烷基硫酸钠聚丙烯酰胺凝胶(SDS-PAGE)电泳法测定蛋白絮凝剂的一、二、三、四级结构,可从分子水平剖析蛋白絮凝剂与新兴污染物的结合机制,为后续研究奠定基础。表1为研究人员对蛋白絮凝剂分子特性的部分表征结果。通过热差-热重方法可得3种蛋白絮凝剂不同的重量损失曲线,辣木籽蛋白絮凝剂的质量损失曲线有3个主要阶段:水分子脱离,辣木籽中的有机物和蛋白质的分解,辣木籽中脂肪酸的分解。γ-聚谷氨酸样品的质量损失曲线主要有3个部分:水分蒸发,不同杂质的分解,γ-聚谷氨酸的分解。其可用于判断所得γ-聚谷氨酸的热稳定性和纯[38]。胶原蛋白质量损失曲线有两部分:胶原蛋白的热分解,聚甲基丙烯酰氧乙基三甲基氯化铵的热分[39]。其可作为判断胶原蛋白是否成功接枝共聚成新型蛋白型絮凝剂的依据。絮凝剂的相对分子质量和电荷性质对其絮凝性能具有重要的意义。蛋白絮凝剂的长链结构可使其更好地发挥架桥作用,使小絮体相互连接、缠绕,形成大的絮体沉淀。在一定范围内增加蛋白絮凝剂的分子量可提高絮凝效果。电中和也是重要的絮凝机理之一,增加蛋白絮凝剂所带电荷数可提高其与污染物分子之间的吸引力,提高絮凝效率。通过SEM可直观看到蛋白絮凝剂微观表面粗糙程度,粗糙度越大,越有利于吸附废水中的污染物。由此可见,蛋白絮凝剂分子中丰富的活性官能团、疏水基和复杂的空间结构为结合水中的新兴污染物创造了得天独厚的条件。

表1  蛋白絮凝剂的表征结果
Table 1  Characterization results of protein flocculant
表征方法表征结果图示参考文献
傅里叶红外光谱(FTIR) 蛋白絮凝剂结构复杂,具有酰胺、胺、羧酸等官能团。可通过去除污染物前后峰的出现、消失以及峰的显著变化,确定其活性的官能团 [20,24,40]
热差-热重分析(TGA-DSC) 对辣木籽提取物进行热差-热重分析。其质量损失曲线有3个主要阶段:水分子脱离,辣木籽中的有机物和蛋白质的分解,辣木籽中脂肪酸的分解 [41-42]
扫描电子显微镜(SEM) 蛋白絮凝剂的微观表面粗糙,具有不规则形颗粒块状结构和大小不一的孔洞 [20,41-42]
zeta电位 蛋白絮凝剂的表面电荷与pH值有关,pH值在2~12范围内,zeta电位在-9~+30.49 mV之间 [23,43-44]
十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE) 蛋白絮凝剂中具有絮凝活性的蛋白质的分子量范围为6.0~100 kDa [20,45-47]
圆二色光谱(CD) 蛋白絮凝剂的二级结构主要是螺旋状的,螺旋结构含量为58%±4%,片状结构含量为10%±3%,无序结构含量约为33% [40,44]

4 蛋白絮凝剂去除水中新兴污染物研究进展

在饮用水与污水处理领域,蛋白絮凝剂及其提取物现已被科研人员广泛研[

35]。例如:辣木籽提取物去除牲畜流出物中的有机污染物(COD[48]以及去除猪废水中耐热大肠杆[49],γ-聚谷氨酸絮凝剂去除水中的镉、锌、铜和铅等重金[44],阳离子型胶原蛋白絮凝剂处理废弃钻井[50]表2为蛋白絮凝剂去除水中新兴污染物的研究现状和结论。已有的研究成果中,大部分为对辣木籽蛋白提取物的研究,其去除对象有消毒副产[41]、表面活性[51]、抗生[52]等。这些物质大多溶解性好,分子内有环状等稳定结构,不易被传统絮凝剂去除,辣木籽蛋白对表面带负电荷的污染物去除效率较高,但其对模拟废水的处理效果优于实际废水的处理效果,可能是由于实际废水中的pH值、温度和共存离子等因素对絮凝过程有一定的干扰。γ-聚谷氨酸絮凝剂为阴离子絮凝剂,分子链上具有大量带负电荷的羧基,能够产生静电斥力,增加絮凝基团静电压差,具有良好的吸附动力学基础,是一种潜在脱色剂。此外,还可处理垃圾渗滤[38]、金属矿物质废[53]、亚甲基[54]、啤酒废[55]等。在大部分情况下,γ-聚谷氨酸絮凝剂单独使用对溶解性有机物的去除率不高,且投加量偏大,更适合应用于低浓度工业废水和河流水体的净化。对γ-聚谷氨酸进行分子结构的改性或联合特定细菌使用可拓宽应用范围,增强絮凝活[56]。胶原蛋白絮凝剂通常是以皮革废弃物提取的明胶为原料制成的阳离子絮凝剂,对造纸废[31],油田废[57]等有较好的去除效果。但提取或酶解得到的阳离子胶原蛋白无法单独使用,需与其他分子接枝共聚或被金属盐改性才能发挥更好的絮凝作用。刘琳[31]研究发现,胶原蛋白絮凝剂对造纸废水中COD、SS以及色度的去除率分别为59.41%、77.12%和86.67%,而聚丙烯酰胺(PAM)在最佳条件下对COD、SS以及色度的去除率分别为52.22%、65.91%和67.59%,胶原蛋白絮凝剂的去除效果均优于PAM。相较于传统絮凝剂(聚丙烯酰胺、阳离子聚丙烯酰胺等),胶原蛋白经改性或接枝共聚后得到的新絮凝剂的絮凝效果更好、更安全、成本更低。

表2  蛋白絮凝剂去除水中新兴污染物的研究现状和结论
Table 2  Research status and conclusion of removing emerging pollutants from water with protein flocculant
污染物蛋白絮凝剂结论参考文献
非甾体抗炎药(酮洛芬、非诺洛芬、双氯芬酸和布洛芬)和卡马西平 辣木籽水溶性蛋白 辣木籽中提取物中的水溶性蛋白质对非甾体抗炎药的模拟废水去除率为100%。对实际废水的去除率为82%~86% [23]
10种选定抗生素药物(磺胺类、氟喹诺酮类、大环内酯类和四环素) 辣木籽水溶性蛋白 辣木籽水溶性蛋白质对10种抗生素的最大去除率在85.2%~96.3%,应用于实际废水处理的去除率为70.4%~92.5% [24]
水处理消毒副产物(卤醚、三卤甲烷和卤酮) 辣木籽粉末 辣木籽提取物作为生物吸附材料,对卤代醚(HEs)、三卤代甲烷(THMs)和卤代酮(HKs)的最高去除率分别为94.9%、90.3%和86%,且其比其他已报道的吸附剂具有更高的吸附能力 [41]
长链阴离子表面活性剂 辣木籽盐溶性蛋白 与其他几种絮凝剂相比,辣木籽提取物对长链阴离子表面活性剂去除效果最好,达到65%,金属铝盐的去除效果最差。比较几种表面活性剂去除效果,对十二烷基二苯醚二磺酸钠的去除效果较差,对其余几种表面活性剂的去除率在60%~75% [51]
四环素 辣木籽盐溶性蛋白 辣木籽提取物对所有浓度的四环素均有去除效果,其中浓度为40 mg/L时的去除效果最好。辣木籽提取物中的蛋白质(cMoL)和四环素的作用机制是吸附电中和作用 [52]
十二烷基硫酸钠 辣木籽盐溶性蛋白 与几种天然絮凝剂相比,辣木籽提取物对十二烷基硫酸钠的去除效果更好,达到80% [58]
洗衣废水 辣木籽粉末 与FeSO4相比,辣木籽提取物对洗衣废水浊度的去除率为83.63%,对COD的去除效率只有42.72%。但辣木籽提取物更环保,絮体易降解 [59]
阿莫西林 辣木籽水溶性蛋白 附着在稻壳灰上的辣木籽蛋白显著提高了去除制药废水中阿莫西林的能力 [60]
双氯芬酸 辣木籽粉末 辣木籽作为生物吸附剂在最优条件下对实际水样中双氯芬酸去除率达100%,且不需要吸附预处理步骤 [61]
啤酒废水 γ-聚谷氨酸 γ-聚谷氨酸絮凝剂对啤酒废水进行COD去除试验,在最佳工艺条件下COD的去除率可达66% [55]
亚甲基蓝 γ-聚谷氨酸水凝胶 三维网络结构的水凝胶,对亚甲基蓝染料具有很好的吸附性能。整个过程分为两个阶段,即静电平衡阶段和溶胀平衡阶段 [62]
铜离子 γ-聚谷氨酸轭合的重组假单胞菌 γ-聚谷氨酸轭合的重组假单胞菌对二价铜离子具有吸附和絮凝作用,吸附率为98%,吸附通量高达127.73 mg/g [63]
造纸废水 胶原蛋白 胶原蛋白絮凝剂对造纸废水中COD、固体悬浮物(SS)以及色度的去除率分别为59.41%、77.12%和86.67%,均优于PAM对其的去除效果。使用胶原蛋白絮凝剂每吨纸节省1.2元 [31]
废弃钻井液 Al(Ⅲ)改性胶原蛋白 Al(Ⅲ)改性胶原蛋白絮凝剂对废弃钻井液CODcr的去除率可到80.1%,SS的含量从2115 mg/L降至190 mg/L,去除效果明显 [50]
油田模拟废水 疏水改性阳离子胶原蛋白 疏水改性阳离子胶原蛋白絮凝剂对油田模拟废水的去除率可达91.5%,与阳离子聚丙烯酰胺的絮凝效果相差不大,但其具有更好的经济和环境效益 [57]

4.1 影响蛋白絮凝剂对新兴污染物去除效果的因素

蛋白絮凝剂中的分子结构含有具有丰富的活性官能团(羟基、氨基、羧基等),能有效地跟水中痕量新兴污染物分子发生相互作[

23,28,31]。不同蛋白絮凝剂中的分子组成、活性高低和对水环境的耐受程度不同,且每种蛋白质有特定的官能团、氨基酸种类肽链排布方式、复杂的空间结构,蛋白质分子必须在其适合的条件下保持原有活性,一旦温度、pH值和共存离子等发生改变,会极大影响其絮凝剂活性,故研究各种因素对这类絮凝剂的去除效果影响具有重要的意义。表3为3种蛋白絮凝剂去除某种特定新兴污染物时的最适条件和主要结论。蛋白絮凝剂在高盐、高温或低温、极端pH值等极端环境条件下应用时,会因为其蛋白质大分子空间构象的变化而显著降低絮凝活性。从以往的研究结果可知,大部分蛋白絮凝剂的最适pH值为7左右,从天然植物或微生物发酵产物中直接提取的蛋白质发生絮凝作用的最适温度为20~25 ℃,温度过高会使其失去原有的活性,过低会抑制其活性。经过提纯得到的多肽链和蛋白质分子的稳定性较差,其絮凝效果受温度、pH值等因素影响较大。但经过改性、重组或聚合后的蛋白絮凝剂的分子结构相对稳定,对高温条件有较强的耐受性。若想进一步降低这些因素对蛋白絮凝剂的影响,首先,增加絮凝剂的投加量可抵消一部分其他因素对絮凝效果的影响,因为在一定范围内,增加絮凝剂投加量可增加其与污染物分子作用的活性位点数量。此外,投加适量的助凝剂(如聚合氯化铝(PAC)等),可增加絮凝效果,降低这些因素对絮凝效果的影响,且投加助凝剂的成本更低,效果更明显。辣木籽蛋白絮凝剂适合去除水中的痕量污染物,主要发挥吸附电中和的作[64],相比普通絮凝剂,其投加量较大,可作为吸附剂使用。γ-聚谷氨酸絮凝剂适合去除高浓度有机废水,其投加量较大,处理某些特定的污染物时需投加助凝剂才能得到更好的去除效果。

表3  3种蛋白絮凝剂去除不同污染物的最优条件
Table 3  Optimal conditions for removal of different pollutants by three biological protein flocculants
污染物絮凝剂最优絮凝条件参考文献
pH值温度/℃投加量初始浓度
非甾体抗炎药和卡马西平 辣木籽蛋白絮凝剂 6 25 4 g/L 1 mg/mL [23]
四环素 辣木籽蛋白絮凝剂 7 22 0.7 g/L 5 mg/L [52]
铅(Pb) 辣木籽蛋白絮凝剂 6 25 10 g/L 4 mg/L [65]
啤酒废水 γ-聚谷氨酸絮凝剂 7.8 20 30 mg/L,需投加CaCl2助凝 1 000 mg/L [55]
二价铜离子 γ-聚谷氨酸轭合的重组假单胞菌絮凝剂 5.5 20~60 1 g/L,需投加CaCl2助凝 32 mg/L [63]
屠宰废水 γ-聚谷氨酸絮凝剂 6.7 25 1 g/L 1 060 mg/L [66]
钢铁废水 γ-聚谷氨酸絮凝剂 7.6 25 0.2 g/L 55 mg/L [66]
废弃钻井液 Al(Ⅲ)改性胶原蛋白絮凝剂 6~9 20~40 20.7 g/L 2 115 g/L [50]
油田废水 疏水改性阳离子胶原蛋白絮凝剂 7 30 30 g/L 20 g/L [57]

4.2 蛋白絮凝剂去除水中新兴污染物的机理

常规絮凝剂主要通过吸附电中和、架桥和卷扫网捕3种机理对水中胶体颗粒进行去除。而水环境中的新兴污染物多为痕量污染物,部分为溶解性强的小分子有机物,大多带化学性质稳定的环状结构,常规药剂中很少有与之结合的活性基团和化学键,增加了处理成本和操作复杂度,传统水处理工艺对水中新兴污染物的去除效果有限,目前针对这类污染物的高效去除技术和去除机理是学者们研究的热点问[

67]。从对水中新兴污染物的去除效果、人体健康、应用成本等方面综合考虑,蛋白絮凝剂是常规絮凝剂良好的替代品。蛋白质絮凝剂中的活性官能团、疏水基和复杂的空间结构对研究其去除水中新兴污染的絮凝机理具有重要意义。通过ζ电位测定及氢键和离子键检验,辣木籽蛋白絮凝剂表面带正电荷,絮凝机理主要是π堆积、静电作用、氢键和分子表面化学基团之间的连接作用与污染物分子相结[35]。羟基、羧基或者氨基等蛋白质分子内的活性基团和颗粒结合是絮凝作用的关键。在一定范围内,可溶于水的蛋白质分子量越大,在水中延展出的链状结构越长,增加了絮凝剂对污染物分子的架桥作用,最后通过网捕作用将带有污染物的絮体沉降。γ-聚谷氨酸絮凝剂是由微生物代谢产生的阴离子有机物,带游离羧基,通过吸附电中和作用与表面带正电荷的胶体颗粒结合,尤其对带正电荷的金属离子有较强的螯合力。γ-聚谷氨酸为长链状分子,可与水中污染物分子发生架桥和卷扫网捕作用,其絮凝性能随分子量的增加而提高,加入Ca2+、Mg2+等二价阳离子能进一步提高γ-聚谷氨酸絮凝剂的絮凝活[68]。阳离子胶原蛋白絮凝剂为有较长多肽链结构的大分子聚合物,可通过吸附电中和作用与水中胶粒结合,当吸附的胶粒增多时,其长链分子结构弯曲变形,最后通过架桥作用将小絮体结合成大絮体沉[69]。辣木籽蛋白、γ-聚谷氨酸及阳离子胶原蛋白3种蛋白絮凝剂对污染物分子的絮凝机理如图2所示。

图2  蛋白絮凝剂对污染物分子的絮凝机理(根据文献[

70]绘制)

Fig. 2  Flocculation mechanism of biological protein flocculant to pollutant molecules(drawn according to reference [

70])

5 结论和展望

随着对生态环境的要求不断提高,研究者们逐渐发现水环境中新兴污染物给生态系统安全和人类健康带来的潜在危害。很多新兴污染物在污水处理厂的去除效率并不高,而蛋白絮凝剂因安全、无污染、可降解等特性展现出了较好的应用前景。蛋白絮凝剂具有复杂的空间结构和多种活性官能团,对水中SS、COD、浊度等有一定去除效果,且产生的污泥体积小,易降解。近年来,水处理领域涌现出越来越多种类的蛋白絮凝剂:以螺蛳蛋白为原料的大分子酶交联螺蛳蛋白絮凝剂处理高浊度废水有较强的去除效果,以鱼骨为原料的鱼骨蛋白絮凝剂絮凝能力强,可用于食品加工废水的处理。随着研究人员的不断探索,蛋白絮凝剂的原料来源和处理对象被拓宽和丰富。由于这类絮凝剂分子结构和化学属性的特殊性,一种特定的蛋白絮凝剂可能不适用对所有污染物的去除,但对某种污染物分子具有较强的专一性和特异性,其应用于污染物种类较单一的污水中具有更大的优势,例如,医药废水、食品加工废水等。蛋白絮凝剂的应用会促使更多生物基絮凝剂的探索和发现,促进生物基絮凝剂精准修饰和调控策略的建立。扩宽水处理材料的研究和应用范围,为生物基水处理材料的开发设计和应用提供理论基础和发展方向,同时会带动生物材料产业链的发展。此外,蛋白絮凝剂的应用,能在一定程度上减轻水处理药剂对水环境的二次污染。对近年来蛋白絮凝剂在水中新兴污染物处理领域的研究和应用进行综述,包括水中新兴污染物的来源和特征,混凝/絮凝法去除水中新兴污染物的研究现状,蛋白絮凝剂的种类及分子结构,影响蛋白絮凝剂对新兴污染物去除效果的因素和蛋白絮凝剂去除水中新兴污染物的机理等方面。3种不同的蛋白絮凝剂在处理效果、应用范围和环境耐受性等方面有各自的优势。但目前蛋白絮凝剂的规模化应用仍受提取条件、发酵培养、水质条件等因素的制约,除此之外,要实现蛋白絮凝剂对水中新兴污染物高效去除的大规模应用还需在以下几方面进行探究:

1)基于蛋白絮凝剂的絮凝机理研究仅停留在定性和宏观结果描述上,在与小分子污染物作用的过程中,何种条件为分子间作用力机制主导,何种条件为架桥或网捕卷扫机制主导难以得到准确阐释,今后需从分子水平研究蛋白与新兴污染物分子的结合机制。

2)为提高蛋白絮凝剂对新兴污染物的去除效果,可在不破坏蛋白分子原有絮凝性能的条件下,对其进行化学修饰和分子调控研究,使其具有可与污染物分子相结合的位点,提高蛋白絮凝剂的稳定性和适用性。此外,大多数新兴污染物在水中为痕量存在,有必要研究在分子浓度较低条件下的絮凝效果,并优化絮凝条件。

3)蛋白絮凝剂的成分可能复杂多样,具有可生化性,能自行降解,不易带来二次污染,为环境友好型产品。但目前尚未研究蛋白絮凝剂对原水质产生的具体影响,出于安全性考虑,可与传统水处理药剂(聚合氯化铝、明矾、聚丙烯酰胺类絮凝剂等)的生物毒性结果对比,从去除效果、生物安全性、制备成本等方面综合评价蛋白类絮凝剂的使用价值。

参考文献

1

吴阳, 刘振中, 江文, . 生物炭对几类常见新兴污染物去除的研究进展[J]. 化工进展, 2021, 40(5): 2839-2851. [百度学术] 

WU Y, LIU Z Z, JIANG W, et al. Research progress on removal of several common emerging pollutants by biochar [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2839-2851. (in Chinese) [百度学术] 

2

赵长伟, 唐文晶, 贾文娟, . 纳滤去除水中新兴污染物的研究进展[J]. 膜科学与技术, 2021, 41(1): 144-151. [百度学术] 

ZHAO C W, TANG W J, JIA W J, et al. Applied research progress of nanofiltration membrane technology for removing the emerging pollutants in water [J]. Membrane Science and Technology, 2021, 41(1): 144-151. (in Chinese) [百度学术] 

3

陈诗良. 应用于污水处理厂的新兴污染物处理技术综述[J]. 中国资源综合利用, 2021, 39(2): 96-98. [百度学术] 

CHEN S L. Overview of emerging pollutant treatment technologies applied in SewageTreatment plants [J]. China Resources Comprehensive Utilization, 2021, 39(2): 96-98. (in Chinese) [百度学术] 

4

SHUKLA R, AHAMMAD S Z. Performance assessment of a modified trickling filter and conventional activated sludge process along with tertiary treatment in removing emerging pollutants from urban sewage [J]. Science of the Total Environment, 2023, 858: 159833. [百度学术] 

5

RANJAN N, SINGH P K, MAURYA N S. Pharmaceuticals in water as emerging pollutants for river health: A critical review under Indian conditions [J]. Ecotoxicology and Environmental Safety, 2022, 247: 114220. [百度学术] 

6

LEE C S, ROBINSON J, CHONG M F. A review on application of flocculants in wastewater treatment [J]. Process Safety and Environmental Protection, 2014, 92(6): 489-508. [百度学术] 

7

ZHOU J X, JIA Y L, LIU H. Coagulation/flocculation-flotation harvest of Microcystis aeruginosa by cationic hydroxyethyl cellulose and Agrobacterium mucopolysaccharides [J]. Chemosphere, 2023, 313: 137503. [百度学术] 

8

骆禹璐, 王啸天, 高敏, . 改性天然高分子絮凝剂制备的研究进展[J]. 高分子通报, 2022(8): 1-11. [百度学术] 

LUO Y L, WANG X T, GAO M, et al. Research progress in preparation of modified natural polymer flocculants [J]. Polymer Bulletin, 2022(8): 1-11. (in Chinese) [百度学术] 

9

唐诗琦. 超声改性辣木籽水溶蛋白结构和功能特性的研究[D]. 南宁: 广西大学, 2020. [百度学术] 

TANG S Q. Studies on the structure and functional properties of ultrasonic treated water soluble protein from moringa oleifera seeds [D]. Nanning: Guangxi University, 2020. (in Chinese) [百度学术] 

10

REIS A C, KOLVENBACH B A, NUNES O C, et al. Biodegradation of antibiotics: The new resistance determinants–part II [J]. New Biotechnology, 2020, 54: 13-27. [百度学术] 

11

邓洋慧. 太湖流域典型新兴污染物污染特征及风险评价[D]. 南昌: 南昌大学, 2020. [百度学术] 

DENG Y H. Typical emerging pollution characteristics and risk assessment of Taihu Lake basin [D]. Nanchang: Nanchang University, 2020. (in Chinese) [百度学术] 

12

GAO Y X, DENG S B, DU Z W, et al. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study [J]. Journal of Hazardous Materials, 2017, 323: 550-557. [百度学术] 

13

TANG Y K, YIN M Z, YANG W W, et al. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment [J]. Water Environment Research, 2019, 91(10): 984-991. [百度学术] 

14

JULIANO C, MAGRINI G. Cosmetic ingredients as emerging pollutants of environmental and health concern. A mini-review [J]. Cosmetics, 2017, 4(2): 11. [百度学术] 

15

BESHA A T, LIU Y J, FANG C, et al. Assessing the interactions between micropollutants and nanoparticles in engineered and natural aquatic environments [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(2): 135-215. [百度学术] 

16

蒙岱均, 王超鹏, 魏鑫馨, . 饮用水中微塑料的检测与去除技术研究进展[J]. 净水技术, 2022, 41(8): 8-15, 107. [百度学术] 

MENG D J, WANG C P, WEI X X, et al. Research progress of determination and removal technology of microplastics in drinking water [J]. Water Purification Technology, 2022, 41(8): 8-15, 107. (in Chinese) [百度学术] 

17

李春庚, 甄新, 李亚丽, . 印染废水染料降解技术研究进展[J]. 应用化工, 2022, 51(5): 1439-1444. [百度学术] 

LI C G, ZHEN X, LI Y L, et al. Advances in dye degradation technology of printing and dyeing wastewater [J]. Applied Chemical Industry, 2022, 51(5): 1439-1444. (in Chinese) [百度学术] 

18

袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022, 59(4): 55-62. [百度学术] 

YUAN S J, ZHANG R M. Research progress of dye wastewater treatment technology [J]. Dyestuffs and Coloration, 2022, 59(4): 55-62. (in Chinese) [百度学术] 

19

EL-GAAYDA J, TITCHOU F E, OUKHRIB R, et al. Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: A state-of-the-art review [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106060. [百度学术] 

20

NONFODJI O M, FATOMBI J K, AHOYO T A, et al. Performance of Moringa oleifera seeds protein and Moringa oleifera seeds protein-polyaluminum chloride composite coagulant in removing organic matter and antibiotic resistant bacteria from hospital wastewater [J]. Journal of Water Process Engineering, 2020, 33: 101103. [百度学术] 

21

VIENO N, TUHKANEN T, KRONBERG L. Elimination of pharmaceuticals in sewage treatment plants in Finland [J]. Water Research, 2007, 41(5): 1001-1012. [百度学术] 

22

ZHANG Y J, ZHOU G Y, YUE J P, et al. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids [J]. Science of the Total Environment, 2021, 800: 149589. [百度学术] 

23

KEBEDE T G, DUBE S, NINDI M M. Removal of non-steroidal anti-inflammatory drugs (NSAIDs) and carbamazepine from wastewater using water-soluble protein extracted from Moringa stenopetala seeds [J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 3095-3103. [百度学术] 

24

KEBEDE T, DUBE S, NINDI M. Removal of multi-class antibiotic drugs from wastewater using water-soluble protein of Moringa stenopetala seeds [J]. Water, 2019, 11(3): 595. [百度学术] 

25

邢洁. 蛋白型微生物絮凝剂对卡马西平的去除效能和机制解析[D]. 哈尔滨: 哈尔滨工业大学, 2014. [百度学术] 

XING J. Removal efficiency and mechanism of carbamazepine by protein bioflocculant [D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese) [百度学术] 

26

BANCESSI A, DUARTE E, et al. The antimicrobial properties of Moringa oleifera Lam. for water treatment: A systematic review [J]. SN Applied Sciences, 2020, 2(3): 323. [百度学术] 

27

DESTA W M, BOTE M E. Wastewater treatment using a natural coagulant (Moringa oleifera seeds): Optimization through response surface methodology [J]. Heliyon, 2021, 7(11): e08451. [百度学术] 

28

WANG D X, HWANG J S, KIM D H, et al. A newly isolated Bacillus siamensis SB1001 for mass production of poly-γ-glutamic acid [J]. Process Biochemistry, 2020, 92: 164-173. [百度学术] 

29

成晓瑜, 张顺亮, 戚彪, . 胶原与胶原多肽的结构、功能及其应用研究现状[J]. 肉类研究, 2011, 25(12): 33-39. [百度学术] 

CHENG X Y, ZHANG S L, QI B, et al. Current situation of research into the structures functions, and applications of collagen and collagen peptides [J]. Meat Research, 2011, 25(12): 33-39. (in Chinese) [百度学术] 

30

李锐琴, 张文华, 廖学品, . 阳离子型胶原蛋白絮凝剂的制备及性能研究[J]. 皮革科学与工程, 2014, 24(3): 5-10. [百度学术] 

LI R Q, ZHANG W H, LIAO X P, et al. Flocculants preparation of cationization collagen protein and their flocculation performance investigation [J]. Leather Science and Engineering, 2014, 24(3): 5-10. (in Chinese) [百度学术] 

31

刘琳, 张安龙, 罗清, . 胶原蛋白与PAM絮凝剂处理造纸中段废水的研究 [J]. 湖南造纸, 2014, 43(4): 20-23, 30. [百度学术] 

LIU L, ZHANG A L, LUO Q, et al. Study on treatment of papermaking wastewater with polyacrylamide and collagen flocculant [J]. Hunan Papermaking, 2014, 43(4): 20-23, 30. (in Chinese) [百度学术] 

32

于群. 超滤技术在蛋白质分离纯化中的应用研究[J]. 当代化工研究, 2020(22): 137-138. [百度学术] 

YU Q. Application of ultrafiltration technology in protein separation and purification [J]. Modern Chemical Research, 2020(22): 137-138. (in Chinese) [百度学术] 

33

胡二坤, 郭兴凤, 郑慧. 凝胶过滤色谱分离纯化鱼蛋白酶解产物[J]. 食品工业, 2020, 41(12): 240-243. [百度学术] 

HU E K, GUO X F, ZHENG H. Separation and purification of fish protein hydrolysate by gel chromatography [J]. The Food Industry, 2020, 41(12): 240-243. (in Chinese) [百度学术] 

34

王籍阅. PgsBCA单体相互作用对γ-聚谷氨酸合成的影响研究[D]. 江苏 无锡: 江南大学, 2022. [百度学术] 

WANG J Y. Study on the influence of the pgs bca components’ interaction on poly-γ-glutamic acid synthesis [D]. Wuxi, Jiangsu: Jiangnan University, 2022. (in Chinese) [百度学术] 

35

UEDA YAMAGUCHI N, CUSIOLI L F, QUESADA H B, et al. A review of Moringa oleifera seeds in water treatment: Trends and future challenges [J]. Process Safety and Environmental Protection, 2021, 147: 405-420. [百度学术] 

36

赵梦凡. 阳离子化和酰化胶原蛋白的制备及其性能研究[D]. 辽宁 大连: 大连理工大学, 2018. [百度学术] 

ZHAO M F. Preparation and application performance of cationic and acylated collagen [D]. Dalian, Liaoning: Dalian University of Technology, 2018. (in Chinese) [百度学术] 

37

KURNIAWAN S B, IMRON M F, CHE ENGKU NORAMALINA CHE ENGKU CHIK, et al. What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? [J]. Science of the Total Environment, 2022, 806: 150902. [百度学术] 

38

叶宏. 地衣芽孢杆菌合成聚谷氨酸的分离纯化与应用开发[D]. 福建 厦门: 厦门大学, 2017. [百度学术] 

YE H. Purification and applications of poly-γ-glutamic acid from bacillus licheniformis [D]. Xiamen, Fujian: Xiamen University, 2017. (in Chinese) [百度学术] 

39

张晓峰. 阳离子胶原蛋白共聚物的合成、表征与应用研究[D]. 西安: 陕西科技大学, 2012. [百度学术] 

ZHANG X F. Study on the synthesis, characterization and application of the cationic collagen copolymer [D]. Xi,an: Shaanxi University of Science & Technology, 2012. (in Chinese) [百度学术] 

40

KWAAMBWA H M, MAIKOKERA R. Infrared and circular dichroism spectroscopic characterisation of secondary structure components of a water treatment coagulant protein extracted from Moringa oleifera seeds [J]. Colloids and Surfaces B: Biointerfaces, 2008, 64(1): 118-125. [百度学术] 

41

ALSHARAA A, BASHEER C, ADIO S O, et al. Removal of haloethers, trihalomethanes and haloketones from water using Moringa oleifera seeds [J]. International Journal of Environmental Science and Technology, 2016, 13(11): 2609-2618. [百度学术] 

42

CAMPOS V, FERNANDES A R A C, MEDEIROS T A M, et al. Physicochemical characterization and evaluation of PGA bioflocculant in coagulation-flocculation and sedimentation processes[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 3753-3760. [百度学术] 

43

BAPTISTA A T A, SILVA M O, GOMES R G, et al. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment [J]. Separation and Purification Technology, 2017, 180: 114-124. [百度学术] 

44

WANG L L, LIU Y M, LIU H M, et al. The role of structural evolution in the complexation and flocculation of heavy metals by the microbial product poly-γ-glutamic acid [J]. Chemosphere, 2022, 308: 136441. [百度学术] 

45

SALEEM M, SAMI A J, BACHMANN R T. Characterisation and coagulant activity screening of fractionated water-soluble seed proteins from Moringa oleifera [J]. Materials Today: Proceedings, 2020, 31: 207-210. [百度学术] 

46

MADRONA G S, BRANCO I G, SEOLIN V J, et al. Evaluation of extracts of Moringa oleifera Lam seeds obtained with NaCl and their effects on water treatment [J]. Acta Scientiarum Technology, 2012, 34(3): 289-293. [百度学术] 

47

NORDMARK B A, PRZYBYCIEN T M, TILTON R D. Comparative coagulation performance study of Moringa oleifera cationic protein fractions with varying water hardness [J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4690-4698. [百度学术] 

48

DEL REAL-OLVERA J, RUSTRIAN-PORTILLA E, HOUBRON E, et al. Adsorption of organic pollutants from slaughterhouse wastewater using powder of Moringa oleifera seeds as a natural coagulant [J]. Desalination and Water Treatment, 2016, 57(21): 9971-9981. [百度学术] 

49

MONACO P A VLO, DE MATOS A T, RIBEIRO I C A, et al. Use of extract of Moringa seeds as coagulant agent in treatment of water supply and wastewater [J]. Ambiente e Agua - an Interdisciplinary Journal of Applied Science, 2010, 5(3): 222-231. [百度学术] 

50

王学川, 张莎, 周亮, . Al(Ⅲ)改性胶原蛋白絮凝材料的结构表征及对废弃钻井液絮凝的研究[J]. 功能材料, 2012, 43(11): 1399-1402. [百度学术] 

WANG X C, ZHANG S, ZHOU L, et al. Study on characterization and flocculation of flocculant based on collagen protein modified by Al(Ⅲ) [J]. Journal of Functional Materials, 2012, 43(11): 1399-1402. (in Chinese) [百度学术] 

51

BELTRÁN-HEREDIA J, SÁNCHEZ-MARTÍN J, BARRADO-MORENO M. Long-chain anionic surfactants in aqueous solution. Removal by Moringa oleifera coagulant [J]. Chemical Engineering Journal, 2012, 180: 128-136. [百度学术] 

52

SANTOS A F S, MATOS M, SOUSA Â, et al. Removal of tetracycline from contaminated water by Moringa oleifera seed preparations [J]. Environmental Technology, 2016, 37(6): 744-751. [百度学术] 

53

万俊杰, 邓毛程. 枯草芽孢杆菌产γ-聚谷氨酸絮凝剂条件及含铬废水处理研究[J]. 环境保护科学, 2010, 36(3): 35-37, 80. [百度学术] 

WAN J J, DENG M C. Study on γ-polyglutamic acid culture condition of bacillus subtillis and chromium(Ⅵ) wastewater treatment [J]. Environmental Protection Science, 2010, 36(3): 35-37, 80. (in Chinese) [百度学术] 

54

张彩宁, 王煦漫. 交联γ-聚谷氨酸吸附亚甲基蓝的研究[J]. 西安工程大学学报, 2011, 25(3): 348-351. [百度学术] 

ZHANG C N, WANG X M. Study on the adsorption of methylene blue by cross-linked γ-PGA [J]. Journal of Xi’an Polytechnic University, 2011, 25(3): 348-351. (in Chinese) [百度学术] 

55

万俊杰, 邓毛程. γ-聚谷氨酸絮凝剂培养条件及处理啤酒废水研究[J]. 环境科学与技术, 2010, 33(4): 157-159. [百度学术] 

WAN J J, DENG M C. Culture condition of flocculating agent and brewery wastewater treatment [J]. Environmental Science & Technology, 2010, 33(4): 157-159. (in Chinese) [百度学术] 

56

董志鹏. 阳离子改性γ-聚谷氨酸絮凝剂的制备及絮凝性能研究[D]. 天津: 河北工业大学, 2018. [百度学术] 

DONG Z P. Synthesis of cationic modified poly (γ-glutamic acid)and research of its flocculation performance [D]. Tianjin: Hebei University of Technology, 2018. (in Chinese) [百度学术] 

57

王学川, 代春吉, 魏菲, . 疏水改性阳离子胶原蛋白絮凝剂制备条件优化[J]. 精细化工, 2018, 35(5): 838-845. [百度学术] 

WANG X C, DAI C J, WEI F, et al. Optimization of preparation conditions of hydrophobically modified cationic collagen flocculant[J]. Fine Chemicals, 2018, 35(5): 838-845. (in Chinese) [百度学术] 

58

BELTRÁN-HEREDIA J, SÁNCHEZ-MARTÍN J. Removal of sodium lauryl sulphate by coagulation/flocculation with Moringa oleifera seed extract [J]. Journal of Hazardous Materials, 2009, 164(2/3): 713-719. [百度学术] 

59

AL-GHEETHI A A, MOHAMED R, WUROCHEKKE A A, et al. Efficiency of Moringa oleifera seeds for treatment of laundry wastewater [J]. MATEC Web of Conferences, 2017, 103: 06001. [百度学术] 

60

OLIVA M P, CORRAL C, JESORO M, et al. Moringa-functionalized rice husk ash adsorbent for the removal of amoxicillin in aqueous solution [J]. MATEC Web of Conferences, 2019, 268: 01005. [百度学术] 

61

DAMÁSIO F Q, DOS SANTOS COSTA B E, SIVA PANIÁGUA C EDA, et al. Utilization of Moringa oleifera seeds as a biosorbent for diclofenac removal in the contaminated aquatic systems [J]. Water Practice and Technology, 2022, 17(8): 1728-1741. [百度学术] 

62

王静心, 李政, 张秋亚, . 亚甲基蓝染液的γ-PGA水凝胶脱色处理[J]. 印染, 2013, 39(24): 1-5. [百度学术] 

WANG J X, LI Z, ZHANG Q Y, et al. Decolorization of methylene blue withyγ-PGA hydrogel [J]. Dyeing & Finishing, 2013, 39(24): 1-5. (in Chinese) [百度学术] 

63

胡鹏高. 聚γ谷氨酸轭合的重组假单胞菌对Cu(Ⅱ)的吸附和絮凝作用[D]. 武汉: 华中农业大学, 2016. [百度学术] 

HU P G. Biosorption of Cu(Ⅱ) and flocculation by γ-PGA-conjugated engineered pseudomonas putida cells surface-displaying GlnBP and SmtA [D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese) [百度学术] 

64

NORDMARK B A, PRZYBYCIEN T M, TILTON R D. Effect of humic acids on the Kaolin coagulation performance of Moringa oleifera proteins [J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4564-4572. [百度学术] 

65

TAVARES F O, DE MORAES PINTO L A, DE JESUS BASSETTI F, et al. Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water [J]. Environmental Technology, 2017, 38(24): 3145-3155. [百度学术] 

66

汪德生, 付蕾, 郎咸明, . 生物絮凝剂γ-PGA絮凝性能的研究[J]. 工业水处理, 2007, 27(8): 32-35. [百度学术] 

WANG D S, FU L, LANG X M, et al. Study on flocculation capability of bioflocculant γ-PGA [J]. Industrial Water Treatment, 2007, 27(8): 32-35. (in Chinese) [百度学术] 

67

GONZÁLEZ-GONZÁLEZ R B, FLORES-CONTRERAS E A, PARRA-SALDÍVAR R, et al. Bio-removal of emerging pollutants by advanced bioremediation techniques [J]. Environmental Research, 2022, 214: 113936. [百度学术] 

68

邵颖, 赵彩凤, 邵赛, . 微生物絮凝剂γ-聚谷氨酸的生产及应用研究进展 [J]. 湖南农业科学, 2017(8): 123-126. [百度学术] 

SHAO Y, ZHAO C F, SHAO S, et al. Research progress on production and application of bioflocculant γ-polyglutamic acid [J]. Hunan Agricultural Sciences, 2017(8): 123-126. (in Chinese) [百度学术] 

69

潘博. 改性胶原蛋白造纸施胶剂和絮凝剂的生物降解性评价[D]. 西安: 陕西科技大学, 2015. [百度学术] 

PAN B. Evaluation of the biodegradability of modified collagen sizing agent and modified collagen flocculating agent [D]. Xi,an: Shaanxi University of Science & Technology, 2015. (in Chinese) [百度学术] 

70

NATÁLIA U Y, LUÍS F C, HELOISE B Q, et al. A review of Moringa oleifera seeds in water treatment: Trends and future challenges [J]. Process Safety and Environmental Protection, 2021, 147: 405-420. [百度学术]