网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

污水硫自养反硝化技术研究进展  PDF

  • 高舒嘉 1,2
  • 邵军荣 3
  • 成宇 2
  • 朱宗强 1
  • 胡承志 1,2,4
1. 桂林理工大学 环境科学与工程学院,广西 桂林 541004; 2. 中国科学院生态环境研究中心 环境水质学国家重点实验室,北京 100085; 3. 长江勘测规划设计研究有限责任公司,武汉 430010; 4. 中国科学院大学,北京 100049

中图分类号: X703.1

最近更新:2024-03-07

DOI:10.11835/j.issn.2096-6717.2023.026

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

硫自养反硝化(SAD)是一种绿色低碳的污水脱氮技术,具有成本低、污泥产量少、无须外加有机碳源等优点,已成为污水脱氮技术研究的热点之一。阐述SAD填料组成与复合硫源填料的合成方法,归纳SAD固定床反应器和流化床反应器的结构及其适用条件,回顾SAD与电化学、异养反硝化、厌氧氨氧化耦合工艺等方面的研究进展,并总结SAD耦合技术的优缺点以及耦合工艺的脱氮特征。微生物的代谢功能是实现高效SAD的关键因素,列举不同代谢特性的SAD功能微生物种类,阐述代表性微生物ThiobacillusSulfurimonas在SAD过程中的反硝化特性及其生长条件。目前,SAD技术在填料、反应器和耦合工艺等方面取得显著进步,但仍面临诸多挑战,在SAD技术温度适应性、高处理负荷反应器设计以及工艺流程优化等方面进一步创新。

中国市政生活污水处理碳源不足问题突出,控氮减碳特别是低C/N污水中硝酸盐的低碳处理已成为行业重大技术挑[

1]。现有污水处理常常需要补充有机碳源以提升反硝化效能,在主流的异养生物反硝化处理中额外投加的有机碳源转化为大量污泥和二氧化碳,这是与污水低碳理念背道而驰的无奈之举。污水的绿色低碳处理已成为环境工程技术研究的热点,是构建可持续水循环系统的重要途径。

硫自养反硝化(SAD)是通过活性污泥中的SAD菌,硫化物作为电子供体,NO3-作为电子受体,将NO3-和NO2-转化为N2进而达到脱氮的效果。其中反硝化体系中的反硝化微生物将NO3-还原为N2或N2O的过程为:NO3-→NO2-→NO→N2O→N2[

2-4]。并且SAD工艺污泥产量低,无须添加有机碳源,能克服传统异养反硝化缺点,具有很广阔的应用前景。

随着“双碳”目标深入推进,具有绿色低碳特征的SAD技术愈发受到科研领域的关注。近几年来,SAD技术在工艺和反硝化微生物作用机制方面取得了新的进展。笔者简述不同种类SAD填料的研究进展,从反应器构型和工艺耦合等角度对SAD及SAD水处理集成工艺技术的研究进行回顾和总结,并展望该技术未来发展方向。

1 SAD填料

电子供体是SAD技术中反应效果及效率的决定性因[

5]。目前在SAD技术中应用较广泛的电子供体主要有S0S2-,常见对应的还原性含硫物质分别为单质硫、硫化亚铁等,它们可以分别制成不同类型的填料:单质硫与硫化物填料、复合硫源填料。

1.1 单质硫与硫化物填料

单质硫填料价格低、毒性小、便于运输和操作,在SAD技术中被广泛使用。研究表明,单质硫填料粒径越小,比表面积就越大,给微生物提供的代谢结合位点越多,可以更好地提升反硝化效率。粒径0.8、3 mm的单质硫填料在经过培养后,当进水NO3--N浓度为80~90 mg/L时,粒径0.8 mm填料的TN去除率达到87%,粒径3 mm硫磺填料TN去除率仅71%[

6]。粒径0.5~1.0 mm的硫磺填料在用于生活污水处理时,SAD系统硝酸盐去除率可以达到84.86%[7]

但单质硫的低水溶性(5 μg/L 20 ℃)导致脱氮效率难以进一步提[

8],因此,含硫化合物(如:Fe2S3、H2S、Na2S2O3等)成为更适宜的电子供体,当硫化铁填料用于处理地下水时,可以同时去除亚砷酸盐和硝酸盐,出水浓度分别低至(7.84±7.29)μg/L和(3.78±1.14)mg/L[9]。另外,将H2S作为硫源,二氧化碳为无机碳源,同时使用磷矿石补充碱度,在脱氮效率达到99.1%的同时解决了SAD工艺中pH值降低的问题,优化了SAD的运行效[10]

1.2 复合硫源填料

SAD工艺中会消耗大量碱度,降低出水pH[

11],进而导致污泥酸化。SAD的理想辅助填料应当能补充碱度且避免增加出水硬度,因此,引入石灰石、牡蛎壳等可提供碱度的pH值调节材料制成复合硫源填料,可显著提升SAD效率。例如,将硫粉和石灰石以1:1的比例通过胶凝黏附法制备硫-石灰石复合硫源填料,将其应用于生活污水尾水的深度脱氮,对TN去除率为90%左右,而未投加填料的去除率仅在80%[12]。但硫-石灰石复合硫源填料存在一些弊端,如出水硬度高、SO42-含量升高等问题。为此,也有学者用其他填料代替石灰石,如贝[13]、沸[14]、陶[15]和珊瑚[16]等。

不仅如此,最优的SAD辅助填料还应当能保障填料具有良好透气性和传质条件,并且能为微生物生长提供良好环境。因此,提高填料比表面积有利于增加SAD微生物的附着生长和提升反硝化速率,一些可强化反硝化效率的新型复合硫源填料应运而生。例如,采用包埋法制备的硫铁生物填料具有疏松多孔结构,有效提高了填料的比表面积,在进水硝酸盐浓度为30 mg/L、HRT为10 h时脱氮效率可以达到99.8%[

17],相比简易复合硫源填料提高了10%左右。此外,利用混合烘干等方式制备的固体复合填料也可以提高脱氮效率,同时使得SAD系统在微生物富集和稳定S/C比方面表现良好;例如将硫磺粉、粉末活性炭和碳酸钙混合后烘干制成3~5 mm的复合填料,相比未投加填料对TN的去除率提高了40%左[18]。将熔融态硫单质、蛋壳或扇贝壳粉末、石灰石粉末混合制成粒状均质复合硫源填料,在处理地下水硝酸盐时,反硝化效率超过99.7%,并且能为SAD过程提供充足的碱度与无机碳[19]

2 SAD生物反应器

SAD填料的形式多种多样,常有不同类型的反应器与之匹配。基于填料在反应器中的状态分为填充床反应器和流化床反应器两大类。

2.1 SAD填充床反应器

SAD填充床反应器(如图1(a))适用机械强度弱、密度大、不易堵塞的填料,水质适用范围广。使用单质硫-碳酸钙颗粒混合填料时,填充床反应器的脱氮效率可以达到膜生物反应器的两[

20];但混合填料存在堵塞、污染的问题,因此,在此基础上发展出了使用复合硫源填料SAD填充床反应器,对饲料废水的处理负荷达到0.36 kg/(m3·d)[21]。此外,SAD填充床反应器被成功应用于地下水硝酸盐污染控制、城市污水深度脱氮等:当采用硫-石灰多孔陶瓷为载体的3 L填充床反应器处理污染地下水时,反应器反硝化效率达到99.5%[22];采用体积为0.8 L的玉米芯-硫为填料的填充床反应器处理城市污水时,最低出水NO3--N浓度为0.31 mg/L,去除率为98.62%[23]。SAD填充床反应器仍存在一些缺点,其单位体积负荷相对较低,不适合大规模污水脱氮处理工程。

2.2 SAD流化床反应器

SAD流化床反应器(如图1(b))具有传质条件好、单位体积负荷高、高速脱氮且低成[

24]等优点,但对填料要求较高,需要使用密度低且有一定机械强度的悬浮填料。在厌氧连续流流化床膜生物反应器(AnFB-MBR)中使用S0颗粒填料和Fe0颗粒填料,颗粒填料与水接触面积大,处理效率提升显著,AnFB-MBR的硝酸盐去除率高达98%,相比于同条件下的SAD填充床反应器的脱氮效率提高了4.4倍,并有效抑制了SO42-的生成和pH值的降[25]。不同电子供体在流化床反应器中拥有不同的脱氮效率,FeS2驱动的反硝化过程仅产生少量SO42-,无须调节pH值,反硝化速率最高可达到142.2 mg/(L·d);但S0驱动的反硝化过程需要碳酸钙保持pH值为中性,因此会产生更多的污泥(硫酸钙沉淀),反硝化速率最高为184.4 mg/(L·d) [26]

综上,填料的内部结构和不同的电子供体对反应器的脱氮效果均有影响,此外,不同的进水污水种类、水力停留时间、反应器的传质性能、排气排泥的效率等诸多因素对脱氮的影响都值得探究。在研究中需将这些参数进行模拟和优化,以设计最佳反应器构建形式,使脱氮效率进一步提高。

(a)  SAD填充床反应器

(b)  SAD流化床反应器

图1  SAD反应器类型示意图

Fig. 1  Schematic diagram of SAD reactor type

3 SAD水处理集成工艺

SAD过程会消耗硫源与碱度,并产生SO42-副产物,将其与其他生物技术组合,优势互补,形成耦合工艺,能提升反硝化系统的抗冲击负荷能力,降低副产物和工艺运行成本,具有很好的应用前景。

3.1 SAD-电化学工艺

SAD耦合电化学工艺(如图2(a))的优势主要在于:1)SAD产生的H+可被电化学反应中和,保持出水pH值的稳定。SAD(S室)-电化学氢自养(H室)耦合工艺(图2(b))可以同时去除ClO4-和NO3-,S室产生的H+被H室中的电化学反应消耗(图2(c)),实现了出水pH值的稳[

27]。2)电化学直接产氢还原硝酸盐可以降低SAD负荷,减少副产物SO42-的产生。在电极驱动的硫自养反硝化工艺中,SAD过程对硝酸盐去除的贡献率为75.3%~83.1%,SO42-产量降低了17%~25%[28];此外,S0粒子和电极都作为反硝化细菌的生物载体,促进了硫粒子和阴极上协同反硝化群落和功能基因的形[29]。还有相当一部分的SAD-电化学工艺研究集中在反应器设计、脱氮性能与工艺优化等方面。例如:生物电化学和SAD耦合体[30]、基于质子交换膜电渗析(PEMED)的SAD脱氮体[31]等,均可实现90%左右的硝酸盐去除率,其中,PEMED的SAD脱氮体系无亚硝酸盐积累,且pH值稳定。

(a)  硫自养-电化学耦合工艺机理示意[

32]

(b)  某种硫自养-电化学反硝化耦合装置示意[

27]

(c)  硫自养-电化学反硝化耦合装置中NO3-和ClO4-

图2  SAD-电化学耦合工艺示意图

Fig. 2  Schematic diagram of sulfur autotrophic-electrochemical coupling process

还原路径示意[

27]

3.2 SAD-异养反硝化(HD)耦合脱氮

SAD和HD耦合有以下优点:1)无须外加有机碳源,降低了运行成本;2)减少副产物SO42-的生[

33];3)脱氮效率大幅提高,污泥产量降[34]。因此,有很多研究将SAD引入污水生化处理中,大多以SAD滤池为深度处理单元(图3(a))。在污水深度脱氮工艺中,SAD滤池在未外加有机碳源的情况下,脱氮效率可以与投加了外碳源的HD滤池相当,硝酸盐去除率达到了(0.268±0.047)kg/(m3·d),大大降低了运行成[35]。以SAD滤池的形式耦合HD有着造价高、工艺流程长的缺点,因此,直接将SAD引入HD单元实现高效耦合,促进了异养反硝化和SAD协同脱氮,NO3--N和TN的去除效率分别达到98.9%和95.7%[2]。近期也有研究将SAD与A2O结合到同一反应器或工艺中,即将硫源填料(如S0、CaCO3、PAC和NaSiO3混合制成的复合填料)投加进A2O反应器中(图3(b));结果TN的去除率由50.2%提高至81.2%,SO42-实际平均生成量为(235.39±43.37)mg/L,小于SO42-生成量理论[36],说明SAD和A2O工艺耦合不仅可以提高脱氮效率,还减少了SAD过程中SO42-的生成量,也可能有利于降低污泥产量,无须碳源实现绿色低碳脱氮。

(a)  污水处理工艺后接SAD滤池示意[

37]

(b)  投加了硫基载体的A2O工艺示意[

36]

图3  SAD-异养反硝化耦合工艺示意图

Fig. 3  Schematic diagram of coupling process of sulfur autotrophic-heterotrophic denitrification

3.3 SAD-厌氧氨氧化耦合工艺

厌氧氨氧化(Anammox)的优势同SAD一样,即无须外加有机物、无须曝气,可以大大节约经济成本,但Anammox过程将水中污染物NO2--N和NH4+转化为N2的同时产生了NO3--N,导致出水硝酸盐含量升[

38],而SAD过程将水中NO3-转化为N2的同时导致副产物NO2--N、H+和SO42-的生成。因此,将SAD与Anammox耦合可以有效取长补短。大多数研究表明,SAD耦合Anammox工艺(SDA工艺)后总氮去除率高达95%以[39-41]。SDA工艺不仅脱氮效率高,还有以下优点:1)SAD中的硫氧化细菌(SOB)对硫化物的快速氧化可以缓解硫化物对SDA体系中Anammox的抑制作[42];2)Anammox可以为SAD过程提供碱度,平衡SDA工艺出水pH[43];3)Anammox可以消除SAD失衡导致过量生成的NO2--N,减少出水副产[44]

将SAD耦合部分硝化-厌氧氨氧化(PNA)工艺有着同样的作用机制,与传统的PNA和SAD工艺相比,耦合工艺中SAD产生的NO2--N易被PNA反应所利用,可实现SO42-产量降低59%,总脱氮效率达到98%[

45]。因此,耦合工艺系统较SAD或Anammox更加稳定,运行操作简单、脱氮效率高。

4 硫自养反硝化微生物

微生物的代谢功能是实现高效SAD的关键。SAD的功能微生物种类、生长条件及其生理特性见表1。其中,硫氧化细菌(SOB)是一类将单质硫或低价的还原性硫化物部分氧化为高价硫化物或完全氧化为硫酸盐(SO42-)的菌[

46]。SOB菌种类多样,分布广泛,其中一部分SOB菌能够利用还原性硫化物作为电子供体来还原NO3-或NO2-[47-48],是参与SAD过程的关键微生物。

表1  SAD细菌种类与特性
Table 1  Species and characteristics of SAD bacteria
菌属微生物功能微生物类型适宜温度T/℃生长pH值电子供体电子受体参考文献
Thiobacillus denitrificans 氧化还原态硫化物或单质硫 专性无机化能自养型菌 28~30 6.5~7.0 HS-S0、S2O32-、FeS2 NO3-、NO2- [55-56]
Thiobacillus thiophilus 氧化硫代硫酸根 兼性厌氧革兰氏阴性菌 -2~30 6.3~8.7 S2O32- NO3- [57]
Thialkalivibrio nitratireducens 硝酸盐还原 硫酸盐弧菌 30 8~10.5 多硫化物、HS-、S2O32- NO3- [58]
Sulfurimonas 硫氧化单胞菌 化能自养菌 15~35 6.5~8.5 S2-S0、S2O32-、H2 NO3-、NO2- [49]
Sulfurimonas denitrificans 氧化硫化物 脱氮嗜硫单胞菌 22 7.0 HS-、S2O32- NO3-、NO2- [59]
Sulfuricella denitrificans 反硝化作用 硫氧化自养菌 22 7.5~8.0 S2-S0、S2O32- NO3-、NO2- [60]
Paracoccus 还原硝酸盐和亚硝酸盐 脱氮副球菌 22±1 7.5±0.3 S2-S0、S2O32-、有机碳、H2 NO3- [61-62]
Thiomicrospira CVO 氧化硫化物还原硝酸盐 化能自养菌 5~35 5.5~8.5 HS-S0、S2O32- NO3-、NO2- [63]
Ferritrophicum 2价铁氧化为3价铁 铁氧化细菌 6.4~19.2 7.4~8.1 Fe2+、H2S2-S0 NO3- [64]

ThiobacillusSulfurimonas是已报道的最普遍的两种SAD细菌,在SAD过程中,它们易受到如电子受体不同、水中有机碳含量和电子供体浓度等环境因素影响,使其相对丰度发生变化。Chen[

49]研究发现,当电子受体从NO3-转变为NO2-Thiobacillus显著增加,且SAD系统表现出较强的处理能力。不仅如此,水中有机碳含量也是影响细菌组成的重要因素,有机组分可抑制Thiobacillus生长,而Sulfurovum更适合在有机碳丰富的条件下生[50];在C/N从2.7减小至0的过程中,Sulfurovum的相对丰度由15.4%降至0.9%,而Thiobacillus成为主要优势菌落,相对丰度达到0.1%~50.2%[51]。此外,Thauera作为SAD过程中的重要异养硝酸盐还原菌,其在低硫化物浓度的条件下可以和Thiobacillus共同维持体系脱氮平[52]。许多研[11, 53-54]也表明,在SAD过程中,Proteobacteria是SAD中主要优势菌门,Sulfurimonas denitrificans (e-proteobacteria)和Thiobacillus denitrificans (β-proteobacteria)是SAD过程中最常见的优势菌属,它们普遍是嗜中性粒细胞或嗜中温的,广泛分布在海洋和陆地生态系统。因此,可以说SAD是氮的生物地球化学过程的人工强化。

5 结论与展望

SAD技术在填料、反应器、耦合工艺等方面的研究取得了显著进步,成为污水绿色低碳脱氮的重要技术选择,且中国已在部分工程上得到了推广和应用。然而,SAD技术的工程化应用仍面临诸多限制:SAD工艺温度适应性需提高、反应器处理负荷亟待提升以及工程化工艺缺乏进一步创新等。以下几个方面未来可能成为SAD研究重点:

1)开发适应低温的SAD技术。研制抗低温SAD菌、设计适合低温运行的SAD工艺系统、开发耐低温的SAD填料载体,克服因低温导致SAD过程脱氮效率低的问题,提高SAD的温度适用范围。

2)提高硫自养反应器的处理负荷。加快传质,促进S0的生物利用率,提高反应器单位体积处理负荷。此外,应用高效生物硫载体材料,如使用粒径较小的S0颗粒或优化S0颗粒表面结构,以及引入细胞外氧化还原介质或导电材料,都能提高反应器的处理负荷,这些思路还需要更多的研究验证。

3)SAD工艺的创新与应用。现有大多数研究采用SAD生物滤池的形式用于污水的深度脱氮,这增加了污水处理的流程且作用单一。未来研究应进一步缩短现有工艺,直接将SAD复合填料引入主流水处理工艺中,探究SAD和异养反硝化细菌的协同脱碳机制,并开展工程应用研究。

参考文献

1

WU Z, LIU Y, LIANG Z Y, et al. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference [J]. Water Research, 2017, 116: 231-240. [百度学术] 

2

LI Y Y, LIU L, WANG H J. Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater: Contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community [J]. Science of the Total Environment, 2022, 814: 151940. [百度学术] 

3

LI X, SHI M, ZHANG M, et al. Progresses and challenges in sulfur autotrophic denitrification-enhanced Anammox for low carbon and efficient nitrogen removal [J]. Critical Reviews in Environmental Science and Technology, 2022, 52(24): 4379-4394. [百度学术] 

4

WANG H C, LIU Y, YANG Y M, et al. Element sulfur-based autotrophic denitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater [J]. Water Research, 2022, 226: 119258. [百度学术] 

5

LI Y Y, LIU Y X, LUO J H, et al. Emerging onsite electron donors for advanced nitrogen removal from anammox effluent of leachate treatment: A review and future applications [J]. Bioresource Technology, 2021, 341: 125905. [百度学术] 

6

马航, 朱强, 朱亮, . 单质硫颗粒尺寸及反应器类型对硫自养反硝化反应器启动的影响[J]. 环境科学, 2016, 37(6): 2235-2242. [百度学术] 

MA H, ZHU Q, ZHU L, et al. Effect of element sulfur particle size and type of the reactor on start-up of sulfur-based autotrophic denitrification reactor [J]. Environmental Science, 2016, 37(6): 2235-2242. (in Chinese) [百度学术] 

7

KONG Z, FENG C P, CHEN N, et al. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment [J]. Bioresource Technology, 2014, 159: 272-279. [百度学术] 

8

UCAR D, YILMAZ T, DI CAPUA F, et al. Comparison of biogenic and chemical sulfur as electron donors for autotrophic denitrification in sulfur-fed membrane bioreactor (SMBR) [J]. Bioresource Technology, 2020, 299: 122574. [百度学术] 

9

LI R H, GUAN M S, WANG W. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification [J]. Water Research, 2021, 189: 116662. [百度学术] 

10

LIU Y J, CHEN N, TONG S, et al. Performance enhancement of H2S-based autotrophic denitrification with bio-gaseous CO2 as sole carbon source through new pH adjustment materials [J]. Journal of Environmental Management, 2020, 261: 110157. [百度学术] 

11

TIAN T, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters [J]. Bioresource Technology, 2020, 299: 122686. [百度学术] 

12

李天昕, 邱诚翔, 徐昊, . 硫/石灰石自养反硝化处理低碳高氮城市污水的工艺[J]. 环境工程学报, 2014, 8(3): 1062-1066. [百度学术] 

LI T X, QIU C X, XU H, et al. Low carbon and high nitrogen concentration municiple wastewater treatment with sulfur/limestone autotrophic denitrification technology [J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 1062-1066. (in Chinese) [百度学术] 

13

SAHINKAYA E, DURSUN N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production [J]. Water Research, 2011, 45(20): 6661-6667. [百度学术] 

14

QAMBRANI N A, OH S E. Effect of dissolved oxygen tension and agitation rates on sulfur-utilizing autotrophic denitrification: Batch tests [J]. Applied Biochemistry and Biotechnology, 2013, 169(1): 181-191. [百度学术] 

15

史航, 隆添翼, 柳聪, . 基于异养-硫自养反硝化耦合技术的陶粒-硫磺混合生物填料对城市污水处理厂尾水的深度脱氮[J]. 环境工程学报, 2022, 16(4): 1363-1372. [百度学术] 

SHI H, LONG T Y, LIU C, et al. Deep nitrogen removal from urban wastewater by ceramsite-sulfur mixed biological fillers based on heterotrophy-sulfur autotrophic denitrification coupling technology [J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1363-1372. (in Chinese) [百度学术] 

16

阮赟杰, 罗国芝, 谭洪新, . 硫/珊瑚石填料床的自养反硝化反应器[J]. 福建农林大学学报(自然科学版), 2009, 38(2): 198-202. [百度学术] 

RUAN Y J, LUO G Z, TAN H X, et al. A sulfur and corallite packed-bed reactor for autotrophic denitrification [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2009, 38(2): 198-202. (in Chinese) [百度学术] 

17

刘艳芳, 刘晓帅, 尹思婕, . 包埋硫铁生物填料的制备及自养反硝化性能[J]. 中国环境科学, 2022, 42(11): 5136-5143. [百度学术] 

LIU Y F, LIU X S, YIN S J, et al. Preparation and autotrophic denitrification properties of embedded sulfur/iron biological filler [J]. China Environmental Science, 2022, 42(11): 5136-5143. (in Chinese) [百度学术] 

18

WOO Y C, LEE J J, JEONG A, et al. Removal of nitrogen by a sulfur-based carrier with powdered activated carbon (PAC) for denitrification in membrane bioreactor (MBR) [J]. Journal of Water Process Engineering, 2020, 34: 101149. [百度学术] 

19

LIANG J, CHEN N, TONG S, et al. Sulfur autotrophic denitrification (SAD) driven by homogeneous composite particles containing CaCO3-type kitchen waste for groundwater remediation [J]. Chemosphere, 2018, 212: 954-963. [百度学术] 

20

VO T K Q, JEONG A, SONG J, et al. Nitrogen removal by using sulfur-based carriers: A comparison of configurations for the denitrification process [J]. Desalination and Water Treatment, 2019, 167: 212-217. [百度学术] 

21

VO T K Q, KANG S, AN S N, et al. Exploring critical factors influencing on autotrophic denitrification by elemental sulfur-based carriers in upflow packed-bed bioreactors [J]. Journal of Water Process Engineering, 2021, 40: 101866. [百度学术] 

22

HAN G B, PARK J K. NO3--N removal with sulfur-lime porous ceramic carrier (SLPC) in the packed-bed bioreactors by autosulfurotrophic denitrification [J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(4): 591-596. [百度学术] 

23

MA W C, ZHOU D P, ZHONG D, et al. Study of nitrogen removal efficiency of the filled bed reactors using alkali-treated corncobs-sulfur (mixotrophic) for treating the effluent from simulated urban wastewater plants [J]. Bioresource Technology, 2022, 349: 126630. [百度学术] 

24

QIU Y Y, GUO J H, ZHANG L, et al. A high-rate sulfidogenic process based on elemental sulfur reduction: Cost-effectiveness evaluation and microbial community analysis [J]. Biochemical Engineering Journal, 2017, 128: 26-32. [百度学术] 

25

ZHANG L L, SONG Y D, ZUO Y, et al. Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor [J]. Chemosphere, 2019, 221: 375-382. [百度学术] 

26

CARBONI M F, MILLS S, ARRIAGA S, et al. Autotrophic denitrification of nitrate rich wastewater in fluidized bed reactors using pyrite and elemental sulfur as electron donors [J]. Environmental Technology & Innovation, 2022, 28: 102878. [百度学术] 

27

GAO M C, WANG S, REN Y, et al. Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy [J]. Chemical Engineering Journal, 2016, 284: 1008-1016. [百度学术] 

28

LIU Y W, NGO H H, GUO W S, et al. Modeling electron competition among nitrogen oxides reduction and N2O accumulation in hydrogenotrophic denitrification [J]. Biotechnology and Bioengineering, 2018, 115(4): 978-988. [百度学术] 

29

CHEN F, LI Z L, YE Y, et al. Coupled sulfur and electrode-driven autotrophic denitrification for significantly enhanced nitrate removal [J]. Water Research, 2022, 220: 118675. [百度学术] 

30

WANG H Y, LYU W L, HU X L, et al. Effects of current intensities on the performances and microbial communities in a combined bio-electrochemical and sulfur autotrophic denitrification (CBSAD) system [J]. Science of the Total Environment, 2019, 694: 133775. [百度学术] 

31

WAN D J, LIU H J, LIU R P, et al. Study of a combined sulfur autotrophic with proton-exchange membrane electrodialytic denitrification technology: Sulfate control and pH balance [J]. Bioresource Technology, 2011, 102(23): 10803-10809. [百度学术] 

32

CHEN F, YE Y, FAN B L, et al. Simultaneous removal of tetrachloroethylene and nitrate with a novel sulfur-packed biocathode system: The synergy between bioelectrocatalytic dechlorination and sulfur autotrophic denitrification [J]. Chemical Engineering Journal, 2022, 439: 135793. [百度学术] 

33

SAHINKAYA E, DURSUN N. Use of elemental sulfur and thiosulfate as electron sources for water denitrification [J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 531-541. [百度学术] 

34

李祥, 马航, 黄勇, . 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651. [百度学术] 

LI X, MA H, HUANG Y, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water [J]. Environmental Science, 2016, 37(7): 2646-2651. (in Chinese) [百度学术] 

35

WANG S S, CHENG H Y, ZHANG H, et al. Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: Comparison on denitrification performance, hydrodynamic characteristics and operating cost [J]. Environmental Research, 2021, 197: 111029. [百度学术] 

36

WOO Y C, LEE J J, KIM H S. Removal of nitrogen from municipal wastewater by denitrification using a sulfur-based carrier: A pilot-scale study [J]. Chemosphere, 2022, 296: 133969. [百度学术] 

37

QIANG J X, ZHOU Z, WANG K C, et al. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment [J]. Water Research, 2020, 170: 115280. [百度学术] 

38

DU R, PENG Y Z, JI J T, et al. Partial denitrification providing nitrite: Opportunities of extending application for anammox [J]. Environment International, 2019, 131: 105001. [百度学术] 

39

LI X, YUAN Y, HUANG Y, et al. Simultaneous removal of ammonia and nitrate by coupled S0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater [J]. Science of the Total Environment, 2019, 661: 235-242. [百度学术] 

40

CHEN F M, LI X, YUAN Y, et al. An efficient way to enhance the total nitrogen removal efficiency of the Anammox process by S0-based short-cut autotrophic denitrification [J]. Journal of Environmental Sciences, 2019, 81: 214-224. [百度学术] 

41

王拓. 厌氧氨氧化与硫自养反硝化两段式耦合工艺运行机理研究 [D]. 天津天津城建大学, 2020: 70. [百度学术] 

WANG T. Study on the mechanism of two-stage coupled process of anammox and sulfur-based autotrophic denitrification [D]. Tianjin: Tianjin Chengjian University, 2020: 70. [百度学术] 

42

DENG Y F, WU D, HUANG H, et al. Exploration and verification of the feasibility of sulfide-driven partial denitrification coupled with anammox for wastewater treatment [J]. Water Research, 2021, 193: 116905. [百度学术] 

43

LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell anammox culture [J]. Water Research, 2014, 60: 1-14. [百度学术] 

44

DENG Y F, ZAN F X, HUANG H, et al. Coupling sulfur-based denitrification with anammox for effective and stable nitrogen removal: A review [J]. Water Research, 2022, 224: 119051. [百度学术] 

45

ZHANG K, KANG T L, YAO S, et al. A novel coupling process with partial nitritation-anammox and short-cut sulfur autotrophic denitrification in a single reactor for the treatment of high ammonium-containing wastewater [J]. Water Research, 2020, 180: 115813. [百度学术] 

46

POKORNA D, ZABRANSKA J. Sulfur-oxidizing bacteria in environmental technology [J]. Biotechnology Advances, 2015, 33(6): 1246-1259. [百度学术] 

47

HAN F, ZHANG M R, SHANG H G, et al. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater [J]. Bioresource Technology, 2020, 315: 123826. [百度学术] 

48

LIU C S, LI Y Z, GAI J N, et al. Cultivation of sulfide-driven partial denitrification granules for efficient nitrite generation from nitrate-sulfide-laden wastewater [J]. Science of the Total Environment, 2022, 804: 150143. [百度学术] 

49

CHEN F M, LI X, GU C W, et al. Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process [J]. Bioresource Technology, 2018, 266: 211-219. [百度学术] 

50

MOULANA A, ANDERSON R E, FORTUNATO C S, et al. Selection is a significant driver of gene gain and loss in the pangenome of the bacterial genus Sulfurovum in geographically distinct deep-sea hydrothermal vents [J]. mSystems, 2020, 5(2): e00673-e00719. [百度学术] 

51

QIU Y Y, ZHANG L, MU X T, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation [J]. Water Research, 2020, 169: 115084. [百度学术] 

52

ZHANG R C, XU X J, CHEN C, et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification [J]. Water Research, 2018, 143: 355-366. [百度学术] 

53

LI Y Y, WANG Y L, WAN D J, et al. Pilot-scale application of sulfur-limestone autotrophic denitrification biofilter for municipal tailwater treatment: Performance and microbial community structure [J]. Bioresource Technology, 2020, 300: 122682. [百度学术] 

54

YANG J F, QIN Y J, LIU X Y, et al. Effects of different electron donors on nitrogen removal performance and microbial community of denitrification system [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107915. [百度学术] 

55

ZHANG Y W, WEI D Y, MORRISON L, et al. Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control [J]. Science of the Total Environment, 2019, 662: 287-296. [百度学术] 

56

WANG W, WEI D Y, LI F C, et al. Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: From feasibility to pilot experiments [J]. Water Research, 2019, 160: 52-59. [百度学术] 

57

KELLERMANN C, GRIEBLER C. Thiobacillus thiophilus sp. nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(3): 583-588. [百度学术] 

58

SOROKIN D Y, TOUROVA T P, SJOLLEMA K A, et al. Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake [J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(Pt 6): 1779-1783. [百度学术] 

59

KEN T K, SUZUKI M, NAKAGAWA S, et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas [J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(8): 1725-1733. [百度学术] 

60

KOJIMA H, FUKUI M. Sulfuricella denitrificans Gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake [J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 12): 2862-2866. [百度学术] 

61

CUI Y X, BISWAL B K, VAN LOOSDRECHT M C M, et al. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor [J]. Water Research, 2019, 166: 115038. [百度学术] 

62

SUN S S, LIU J, ZHANG M P, et al. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission [J]. Bioresource Technology, 2020, 300: 122651. [百度学术] 

63

GEVERTZ D, TELANG A J, VOORDOUW G, et al. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine [J]. Applied and Environmental Microbiology, 2000, 66(6): 2491-2501. [百度学术] 

64

QIAN J, LU H, JIANG F, et al. Beneficial co-treatment of simple wet flue gas desulphurization wastes with freshwater sewage through development of mixed denitrification–SANI process [J]. Chemical Engineering Journal, 2015, 262: 109-118. [百度学术]